blob: 1ef8bf7254a27c4167ce4234cfc708ea820eeea6 [file] [log] [blame]
// Copyright (c) 2017, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8.graph;
import static com.android.tools.r8.ir.desugar.LambdaRewriter.LAMBDA_GROUP_CLASS_NAME_PREFIX;
import com.android.tools.r8.ir.analysis.type.ClassTypeLatticeElement;
import com.android.tools.r8.ir.desugar.LambdaDescriptor;
import com.android.tools.r8.utils.SetUtils;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Sets;
import java.util.ArrayDeque;
import java.util.Collections;
import java.util.Deque;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.function.Consumer;
import java.util.function.Function;
public class AppInfoWithSubtyping extends AppInfo implements ClassHierarchy {
private static final int ROOT_LEVEL = 0;
private static final int UNKNOWN_LEVEL = -1;
private static final int INTERFACE_LEVEL = -2;
// Since most Java types has no sub-types, we can just share an empty immutable set until we need
// to add to it.
private static final Set<DexType> NO_DIRECT_SUBTYPE = ImmutableSet.of();
private static class TypeInfo {
private final DexType type;
int hierarchyLevel = UNKNOWN_LEVEL;
/**
* Set of direct subtypes. This set has to remain sorted to ensure determinism. The actual
* sorting is not important but {@link DexType#slowCompareTo(DexType)} works well.
*/
Set<DexType> directSubtypes = NO_DIRECT_SUBTYPE;
// Caching what interfaces this type is implementing. This includes super-interface hierarchy.
Set<DexType> implementedInterfaces = null;
TypeInfo(DexType type) {
this.type = type;
}
@Override
public String toString() {
return "TypeInfo{" + type + ", level:" + hierarchyLevel + "}";
}
private void ensureDirectSubTypeSet() {
if (directSubtypes == NO_DIRECT_SUBTYPE) {
directSubtypes = new ConcurrentSkipListSet<>(DexType::slowCompareTo);
}
}
private void setLevel(int level) {
if (level == hierarchyLevel) {
return;
}
if (hierarchyLevel == INTERFACE_LEVEL) {
assert level == ROOT_LEVEL + 1;
} else if (level == INTERFACE_LEVEL) {
assert hierarchyLevel == ROOT_LEVEL + 1 || hierarchyLevel == UNKNOWN_LEVEL;
hierarchyLevel = INTERFACE_LEVEL;
} else {
assert hierarchyLevel == UNKNOWN_LEVEL;
hierarchyLevel = level;
}
}
synchronized void addDirectSubtype(TypeInfo subtypeInfo) {
assert hierarchyLevel != UNKNOWN_LEVEL;
ensureDirectSubTypeSet();
directSubtypes.add(subtypeInfo.type);
subtypeInfo.setLevel(hierarchyLevel + 1);
}
void tagAsSubtypeRoot() {
setLevel(ROOT_LEVEL);
}
void tagAsInterface() {
setLevel(INTERFACE_LEVEL);
}
public boolean isInterface() {
assert hierarchyLevel != UNKNOWN_LEVEL : "Program class missing: " + this;
assert type.isClassType();
return hierarchyLevel == INTERFACE_LEVEL;
}
public boolean isUnknown() {
return hierarchyLevel == UNKNOWN_LEVEL;
}
synchronized void addInterfaceSubtype(DexType type) {
// Interfaces all inherit from java.lang.Object. However, we assign a special level to
// identify them later on.
setLevel(INTERFACE_LEVEL);
ensureDirectSubTypeSet();
directSubtypes.add(type);
}
}
// Set of missing classes, discovered during subtypeMap computation.
private final Set<DexType> missingClasses = Sets.newIdentityHashSet();
// Map from types to their subtypes.
private final Map<DexType, ImmutableSet<DexType>> subtypeMap = new IdentityHashMap<>();
// Map from synthesized classes to their supertypes.
private final Map<DexType, ImmutableSet<DexType>> supertypesForSynthesizedClasses =
new ConcurrentHashMap<>();
// Map from types to their subtyping information.
private final Map<DexType, TypeInfo> typeInfo;
// Caches which static types that may store an object that has a non-default finalize() method.
// E.g., `java.lang.Object -> TRUE` if there is a subtype of Object that overrides finalize().
private final Map<DexType, Boolean> mayHaveFinalizeMethodDirectlyOrIndirectlyCache =
new ConcurrentHashMap<>();
public AppInfoWithSubtyping(DexApplication application) {
super(application);
typeInfo = new ConcurrentHashMap<>();
// Recompute subtype map if we have modified the graph.
populateSubtypeMap(application.asDirect(), application.dexItemFactory);
}
protected AppInfoWithSubtyping(AppInfoWithSubtyping previous) {
super(previous);
missingClasses.addAll(previous.missingClasses);
subtypeMap.putAll(previous.subtypeMap);
supertypesForSynthesizedClasses.putAll(previous.supertypesForSynthesizedClasses);
typeInfo = new ConcurrentHashMap<>(previous.typeInfo);
assert app() instanceof DirectMappedDexApplication;
}
@Override
public void addSynthesizedClass(DexProgramClass synthesizedClass) {
super.addSynthesizedClass(synthesizedClass);
// Register synthesized type, which has two side effects:
// 1) Set the hierarchy level of synthesized type based on that of its super type,
// 2) Register the synthesized type as a subtype of the supertype.
//
// The first one makes method resolutions on that synthesized class free from assertion errors
// about unknown hierarchy level.
//
// For the second one, note that such addition is synchronized, but the retrieval of direct
// subtypes isn't. Thus, there is a chance of race conditions: utils that check/iterate direct
// subtypes, e.g., allImmediateSubtypes, hasSubTypes, etc., may not be able to see this new
// synthesized class. However, in practice, this would be okay because, in most cases,
// synthesized class's super type is Object, which in general has other subtypes in any way.
// Also, iterating all subtypes of Object usually happens before/after IR processing, i.e., as
// part of structural changes, such as bottom-up traversal to collect all method signatures,
// which are free from such race conditions. Another exceptional case is synthesized classes
// whose synthesis is isolated from IR processing. For example, lambda group class that merges
// lambdas with the same interface are synthesized/finalized even after post processing of IRs.
assert synthesizedClass.superType == dexItemFactory().objectType
|| synthesizedClass.type.toString().contains(LAMBDA_GROUP_CLASS_NAME_PREFIX)
: "Make sure retrieval and iteration of sub types of `" + synthesizedClass.superType
+ "` is guaranteed to be thread safe and able to see `" + synthesizedClass + "`";
registerNewType(synthesizedClass.type, synthesizedClass.superType);
// TODO(b/129458850): Remove when we no longer synthesize classes on-the-fly.
Set<DexType> visited = SetUtils.newIdentityHashSet(synthesizedClass.allImmediateSupertypes());
Deque<DexType> worklist = new ArrayDeque<>(visited);
while (!worklist.isEmpty()) {
DexType type = worklist.removeFirst();
assert visited.contains(type);
DexClass clazz = definitionFor(type);
if (clazz == null) {
continue;
}
for (DexType supertype : clazz.allImmediateSupertypes()) {
if (visited.add(supertype)) {
worklist.addLast(supertype);
}
}
}
if (!visited.isEmpty()) {
supertypesForSynthesizedClasses.put(synthesizedClass.type, ImmutableSet.copyOf(visited));
}
}
private boolean isSynthesizedClassStrictSubtypeOf(DexType synthesizedClass, DexType supertype) {
Set<DexType> supertypesOfSynthesizedClass =
supertypesForSynthesizedClasses.get(synthesizedClass);
return supertypesOfSynthesizedClass != null && supertypesOfSynthesizedClass.contains(supertype);
}
private DirectMappedDexApplication getDirectApplication() {
// TODO(herhut): Remove need for cast.
return (DirectMappedDexApplication) app();
}
public Iterable<DexLibraryClass> libraryClasses() {
assert checkIfObsolete();
return getDirectApplication().libraryClasses();
}
public Set<DexType> getMissingClasses() {
assert checkIfObsolete();
return Collections.unmodifiableSet(missingClasses);
}
public Set<DexType> subtypes(DexType type) {
assert checkIfObsolete();
assert type.isClassType();
ImmutableSet<DexType> subtypes = subtypeMap.get(type);
return subtypes == null ? ImmutableSet.of() : subtypes;
}
private void populateSuperType(Map<DexType, Set<DexType>> map, DexType superType,
DexClass baseClass, Function<DexType, DexClass> definitions) {
if (superType != null) {
Set<DexType> set = map.computeIfAbsent(superType, ignore -> new HashSet<>());
if (set.add(baseClass.type)) {
// Only continue recursion if type has been added to set.
populateAllSuperTypes(map, superType, baseClass, definitions);
}
}
}
private TypeInfo getTypeInfo(DexType type) {
assert type != null;
return typeInfo.computeIfAbsent(type, TypeInfo::new);
}
private void populateAllSuperTypes(
Map<DexType, Set<DexType>> map,
DexType holder,
DexClass baseClass,
Function<DexType, DexClass> definitions) {
DexClass holderClass = definitions.apply(holder);
// Skip if no corresponding class is found.
if (holderClass != null) {
populateSuperType(map, holderClass.superType, baseClass, definitions);
if (holderClass.superType != null) {
getTypeInfo(holderClass.superType).addDirectSubtype(getTypeInfo(holder));
} else {
// We found java.lang.Object
assert dexItemFactory().objectType == holder;
}
for (DexType inter : holderClass.interfaces.values) {
populateSuperType(map, inter, baseClass, definitions);
getTypeInfo(inter).addInterfaceSubtype(holder);
}
if (holderClass.isInterface()) {
getTypeInfo(holder).tagAsInterface();
}
} else {
if (baseClass.isProgramClass() || baseClass.isClasspathClass()) {
missingClasses.add(holder);
}
// The subtype chain is broken, at least make this type a subtype of Object.
if (holder != dexItemFactory().objectType) {
getTypeInfo(dexItemFactory().objectType).addDirectSubtype(getTypeInfo(holder));
}
}
}
private void populateSubtypeMap(DirectMappedDexApplication app, DexItemFactory dexItemFactory) {
getTypeInfo(dexItemFactory.objectType).tagAsSubtypeRoot();
Map<DexType, Set<DexType>> map = new IdentityHashMap<>();
for (DexClass clazz : app.allClasses()) {
populateAllSuperTypes(map, clazz.type, clazz, app::definitionFor);
}
for (Map.Entry<DexType, Set<DexType>> entry : map.entrySet()) {
subtypeMap.put(entry.getKey(), ImmutableSet.copyOf(entry.getValue()));
}
assert validateLevelsAreCorrect(app::definitionFor, dexItemFactory);
}
private boolean validateLevelsAreCorrect(
Function<DexType, DexClass> definitions, DexItemFactory dexItemFactory) {
Set<DexType> seenTypes = Sets.newIdentityHashSet();
Deque<DexType> worklist = new ArrayDeque<>();
DexType objectType = dexItemFactory.objectType;
worklist.add(objectType);
while (!worklist.isEmpty()) {
DexType next = worklist.pop();
DexClass nextHolder = definitions.apply(next);
DexType superType;
if (nextHolder == null) {
// We might lack the definition of Object, so guard against that.
superType = next == dexItemFactory.objectType ? null : dexItemFactory.objectType;
} else {
superType = nextHolder.superType;
}
assert !seenTypes.contains(next);
seenTypes.add(next);
TypeInfo nextInfo = getTypeInfo(next);
if (superType == null) {
assert nextInfo.hierarchyLevel == ROOT_LEVEL;
} else {
TypeInfo superInfo = getTypeInfo(superType);
assert superInfo.hierarchyLevel == nextInfo.hierarchyLevel - 1
|| (superInfo.hierarchyLevel == ROOT_LEVEL
&& nextInfo.hierarchyLevel == INTERFACE_LEVEL);
assert superInfo.directSubtypes.contains(next);
}
if (nextInfo.hierarchyLevel != INTERFACE_LEVEL) {
// Only traverse the class hierarchy subtypes, not interfaces.
worklist.addAll(nextInfo.directSubtypes);
} else if (nextHolder != null) {
// Test that the interfaces of this class are interfaces and have this class as subtype.
for (DexType iface : nextHolder.interfaces.values) {
TypeInfo ifaceInfo = getTypeInfo(iface);
assert ifaceInfo.directSubtypes.contains(next);
assert ifaceInfo.hierarchyLevel == INTERFACE_LEVEL;
}
}
}
return true;
}
protected boolean hasAnyInstantiatedLambdas(DexProgramClass clazz) {
assert checkIfObsolete();
return true; // Don't know, there might be.
}
public boolean methodDefinedInInterfaces(DexEncodedMethod method, DexType implementingClass) {
DexClass holder = definitionFor(implementingClass);
if (holder == null) {
return false;
}
for (DexType iface : holder.interfaces.values) {
if (methodDefinedInInterface(method, iface)) {
return true;
}
}
return false;
}
public boolean methodDefinedInInterface(DexEncodedMethod method, DexType iface) {
DexClass potentialHolder = definitionFor(iface);
if (potentialHolder == null) {
return false;
}
assert potentialHolder.isInterface();
for (DexEncodedMethod virtualMethod : potentialHolder.virtualMethods) {
if (virtualMethod.method.hasSameProtoAndName(method.method)
&& virtualMethod.accessFlags.isSameVisibility(method.accessFlags)) {
return true;
}
}
for (DexType parentInterface : potentialHolder.interfaces.values) {
if (methodDefinedInInterface(method, parentInterface)) {
return true;
}
}
return false;
}
/**
* Resolve the methods implemented by the lambda expression that created the {@code callSite}.
*
* <p>If {@code callSite} was not created as a result of a lambda expression (i.e. the metafactory
* is not {@code LambdaMetafactory}), the empty set is returned.
*
* <p>If the metafactory is neither {@code LambdaMetafactory} nor {@code StringConcatFactory}, a
* warning is issued.
*
* <p>The returned set of methods all have {@code callSite.methodName} as the method name.
*
* @param callSite Call site to resolve.
* @return Methods implemented by the lambda expression that created the {@code callSite}.
*/
public Set<DexEncodedMethod> lookupLambdaImplementedMethods(DexCallSite callSite) {
assert checkIfObsolete();
List<DexType> callSiteInterfaces = LambdaDescriptor.getInterfaces(callSite, this);
if (callSiteInterfaces == null || callSiteInterfaces.isEmpty()) {
return Collections.emptySet();
}
Set<DexEncodedMethod> result = new HashSet<>();
Deque<DexType> worklist = new ArrayDeque<>(callSiteInterfaces);
Set<DexType> visited = Sets.newIdentityHashSet();
while (!worklist.isEmpty()) {
DexType iface = worklist.removeFirst();
if (getTypeInfo(iface).isUnknown()) {
// Skip this interface. If the lambda only implements missing library interfaces and not any
// program interfaces, then minification and tree shaking are not interested in this
// DexCallSite anyway, so skipping this interface is harmless. On the other hand, if
// minification is run on a program with a lambda interface that implements both a missing
// library interface and a present program interface, then we might minify the method name
// on the program interface even though it should be kept the same as the (missing) library
// interface method. That is a shame, but minification is not suited for incomplete programs
// anyway.
continue;
}
if (!visited.add(iface)) {
// Already visited previously. May happen due to "diamond shapes" in the interface
// hierarchy.
continue;
}
assert getTypeInfo(iface).isInterface();
DexClass clazz = definitionFor(iface);
if (clazz != null) {
for (DexEncodedMethod method : clazz.virtualMethods()) {
if (method.method.name == callSite.methodName && method.accessFlags.isAbstract()) {
result.add(method);
}
}
Collections.addAll(worklist, clazz.interfaces.values);
}
}
return result;
}
public boolean isStringConcat(DexMethodHandle bootstrapMethod) {
assert checkIfObsolete();
return bootstrapMethod.type.isInvokeStatic()
&& (bootstrapMethod.asMethod() == dexItemFactory().stringConcatWithConstantsMethod
|| bootstrapMethod.asMethod() == dexItemFactory().stringConcatMethod);
}
private void registerNewType(DexType newType, DexType superType) {
assert checkIfObsolete();
// Register the relationship between this type and its superType.
getTypeInfo(superType).addDirectSubtype(getTypeInfo(newType));
}
@VisibleForTesting
public void registerNewTypeForTesting(DexType newType, DexType superType) {
registerNewType(newType, superType);
}
@Override
public boolean hasSubtyping() {
assert checkIfObsolete();
return true;
}
@Override
public AppInfoWithSubtyping withSubtyping() {
assert checkIfObsolete();
return this;
}
public Set<DexType> allImmediateSubtypes(DexType type) {
return getTypeInfo(type).directSubtypes;
}
public boolean isUnknown(DexType type) {
return getTypeInfo(type).isUnknown();
}
public boolean isMarkedAsInterface(DexType type) {
return getTypeInfo(type).isInterface();
}
@Override
public boolean hasSubtypes(DexType type) {
return !getTypeInfo(type).directSubtypes.isEmpty();
}
public boolean isRelatedBySubtyping(DexType type, DexType other) {
assert type.isClassType();
assert other.isClassType();
return isSubtype(type, other) || isSubtype(other, type);
}
@Override
public boolean isSubtype(DexType subtype, DexType supertype) {
if (subtype == supertype || isStrictSubtypeOf(subtype, supertype)) {
return true;
}
if (synthesizedClasses.containsKey(subtype)) {
return isSynthesizedClassStrictSubtypeOf(subtype, supertype);
}
return false;
}
public boolean isStrictSubtypeOf(DexType subtype, DexType supertype) {
// For all erroneous cases, saying `no`---not a strict subtype---is conservative.
if (isStrictSubtypeOf(subtype, supertype, false)) {
return true;
}
if (synthesizedClasses.containsKey(subtype)) {
return isSynthesizedClassStrictSubtypeOf(subtype, supertype);
}
return false;
}
// Depending on optimizations, conservative answer of subtype relation may vary.
// Pass different `orElse` in that case.
private boolean isStrictSubtypeOf(DexType subtype, DexType supertype, boolean orElse) {
if (subtype == supertype) {
return false;
}
// Treat the object class special as it is always the supertype, even in the case of broken
// subtype chains.
if (subtype == dexItemFactory().objectType) {
return false;
}
if (supertype == dexItemFactory().objectType) {
return true;
}
TypeInfo subInfo = getTypeInfo(subtype);
if (subInfo.hierarchyLevel == INTERFACE_LEVEL) {
return isInterfaceSubtypeOf(subtype, supertype);
}
TypeInfo superInfo = getTypeInfo(supertype);
if (superInfo.hierarchyLevel == INTERFACE_LEVEL) {
return superInfo.directSubtypes.stream()
.anyMatch(superSubtype -> isSubtype(subtype, superSubtype));
}
return isSubtypeOfClass(subInfo, superInfo, orElse);
}
private boolean isInterfaceSubtypeOf(DexType candidate, DexType other) {
if (candidate == other || other == dexItemFactory().objectType) {
return true;
}
DexClass candidateHolder = definitionFor(candidate);
if (candidateHolder == null) {
return false;
}
for (DexType iface : candidateHolder.interfaces.values) {
assert getTypeInfo(iface).hierarchyLevel == INTERFACE_LEVEL;
if (isInterfaceSubtypeOf(iface, other)) {
return true;
}
}
return false;
}
private boolean isSubtypeOfClass(TypeInfo subInfo, TypeInfo superInfo, boolean orElse) {
if (superInfo.hierarchyLevel == UNKNOWN_LEVEL) {
// We have no definition for this class, hence it is not part of the hierarchy.
return orElse;
}
while (superInfo.hierarchyLevel < subInfo.hierarchyLevel) {
DexClass holder = definitionFor(subInfo.type);
assert holder != null && !holder.isInterface();
subInfo = getTypeInfo(holder.superType);
}
return subInfo.type == superInfo.type;
}
/**
* Apply the given function to all classes that directly extend this class.
*
* <p>If this class is an interface, then this method will visit all sub-interfaces. This deviates
* from the dex-file encoding, where subinterfaces "implement" their super interfaces. However, it
* is consistent with the source language.
*/
public void forAllImmediateExtendsSubtypes(DexType type, Consumer<DexType> f) {
allImmediateExtendsSubtypes(type).forEach(f);
}
public Iterable<DexType> allImmediateExtendsSubtypes(DexType type) {
TypeInfo info = getTypeInfo(type);
assert info.hierarchyLevel != UNKNOWN_LEVEL;
if (info.hierarchyLevel == INTERFACE_LEVEL) {
return Iterables.filter(info.directSubtypes, t -> getTypeInfo(t).isInterface());
} else if (info.hierarchyLevel == ROOT_LEVEL) {
// This is the object type. Filter out interfaces
return Iterables.filter(info.directSubtypes, t -> !getTypeInfo(t).isInterface());
} else {
return info.directSubtypes;
}
}
/**
* Apply the given function to all classes that directly implement this interface.
*
* <p>The implementation does not consider how the hierarchy is encoded in the dex file, where
* interfaces "implement" their super interfaces. Instead it takes the view of the source
* language, where interfaces "extend" their superinterface.
*/
public void forAllImmediateImplementsSubtypes(DexType type, Consumer<DexType> f) {
allImmediateImplementsSubtypes(type).forEach(f);
}
public Iterable<DexType> allImmediateImplementsSubtypes(DexType type) {
TypeInfo info = getTypeInfo(type);
if (info.hierarchyLevel == INTERFACE_LEVEL) {
return Iterables.filter(info.directSubtypes, subtype -> !getTypeInfo(subtype).isInterface());
}
return ImmutableList.of();
}
public boolean isMissingOrHasMissingSuperType(DexType type) {
DexClass clazz = definitionFor(type);
return clazz == null || clazz.hasMissingSuperType(this);
}
public boolean isExternalizable(DexType type) {
return implementedInterfaces(type).contains(dexItemFactory().externalizableType);
}
public boolean isSerializable(DexType type) {
return implementedInterfaces(type).contains(dexItemFactory().serializableType);
}
/** Collect all interfaces that this type directly or indirectly implements. */
public Set<DexType> implementedInterfaces(DexType type) {
TypeInfo info = getTypeInfo(type);
if (info.implementedInterfaces != null) {
return info.implementedInterfaces;
}
synchronized (this) {
if (info.implementedInterfaces == null) {
Set<DexType> interfaces = Sets.newIdentityHashSet();
implementedInterfaces(type, interfaces);
info.implementedInterfaces = interfaces;
}
}
return info.implementedInterfaces;
}
private void implementedInterfaces(DexType type, Set<DexType> interfaces) {
DexClass dexClass = definitionFor(type);
// Loop to traverse the super type hierarchy of the current type.
while (dexClass != null) {
if (dexClass.isInterface()) {
interfaces.add(dexClass.type);
}
for (DexType itf : dexClass.interfaces.values) {
implementedInterfaces(itf, interfaces);
}
if (dexClass.superType == null) {
break;
}
dexClass = definitionFor(dexClass.superType);
}
}
public DexType getSingleSubtype(DexType type) {
TypeInfo info = getTypeInfo(type);
assert info.hierarchyLevel != UNKNOWN_LEVEL;
if (info.directSubtypes.size() == 1) {
return Iterables.getFirst(info.directSubtypes, null);
} else {
return null;
}
}
@Override
public boolean isDirectSubtype(DexType subtype, DexType supertype) {
TypeInfo info = getTypeInfo(supertype);
assert info.hierarchyLevel != UNKNOWN_LEVEL;
return info.directSubtypes.contains(subtype);
}
// TODO(b/130636783): inconsistent location
public DexType computeLeastUpperBoundOfClasses(DexType subtype, DexType other) {
if (subtype == other) {
return subtype;
}
DexType objectType = dexItemFactory().objectType;
TypeInfo subInfo = getTypeInfo(subtype);
TypeInfo superInfo = getTypeInfo(other);
// If we have no definition for either class, stop proceeding.
if (subInfo.hierarchyLevel == UNKNOWN_LEVEL || superInfo.hierarchyLevel == UNKNOWN_LEVEL) {
return objectType;
}
if (subtype == objectType || other == objectType) {
return objectType;
}
TypeInfo t1;
TypeInfo t2;
if (superInfo.hierarchyLevel < subInfo.hierarchyLevel) {
t1 = superInfo;
t2 = subInfo;
} else {
t1 = subInfo;
t2 = superInfo;
}
// From now on, t2.hierarchyLevel >= t1.hierarchyLevel
DexClass dexClass;
// Make both of other and this in the same level.
while (t2.hierarchyLevel > t1.hierarchyLevel) {
dexClass = definitionFor(t2.type);
if (dexClass == null || dexClass.superType == null) {
return objectType;
}
t2 = getTypeInfo(dexClass.superType);
}
// At this point, they are at the same level.
// lubType starts from t1, and will move up; t2 starts from itself, and will move up, too.
// They move up in their own hierarchy tree, and will repeat the process until they meet.
// (It will stop at anytime when either one's definition is not found.)
DexType lubType = t1.type;
DexType t2Type = t2.type;
while (t2Type != lubType) {
assert getTypeInfo(t2Type).hierarchyLevel == getTypeInfo(lubType).hierarchyLevel;
dexClass = definitionFor(t2Type);
if (dexClass == null) {
lubType = objectType;
break;
}
t2Type = dexClass.superType;
dexClass = definitionFor(lubType);
if (dexClass == null) {
lubType = objectType;
break;
}
lubType = dexClass.superType;
}
return lubType;
}
public boolean inDifferentHierarchy(DexType type1, DexType type2) {
return !isSubtype(type1, type2) && !isSubtype(type2, type1);
}
public boolean mayHaveFinalizeMethodDirectlyOrIndirectly(ClassTypeLatticeElement type) {
Set<DexType> interfaces = type.getInterfaces();
if (!interfaces.isEmpty()) {
for (DexType interfaceType : interfaces) {
if (computeMayHaveFinalizeMethodDirectlyOrIndirectlyIfAbsent(interfaceType, false)) {
return true;
}
}
return false;
}
return computeMayHaveFinalizeMethodDirectlyOrIndirectlyIfAbsent(type.getClassType(), true);
}
private boolean computeMayHaveFinalizeMethodDirectlyOrIndirectlyIfAbsent(
DexType type, boolean lookUpwards) {
assert type.isClassType();
Boolean cache = mayHaveFinalizeMethodDirectlyOrIndirectlyCache.get(type);
if (cache != null) {
return cache;
}
DexClass clazz = definitionFor(type);
if (clazz == null) {
// This is strictly not conservative but is needed to avoid that we treat Object as having
// a subtype that has a non-default finalize() implementation.
mayHaveFinalizeMethodDirectlyOrIndirectlyCache.put(type, false);
return false;
}
if (clazz.isProgramClass()) {
if (lookUpwards) {
DexEncodedMethod resolutionResult =
resolveMethod(type, dexItemFactory().objectMethods.finalize).getSingleTarget();
if (resolutionResult != null && resolutionResult.isProgramMethod(this)) {
mayHaveFinalizeMethodDirectlyOrIndirectlyCache.put(type, true);
return true;
}
} else {
if (clazz.lookupVirtualMethod(dexItemFactory().objectMethods.finalize) != null) {
mayHaveFinalizeMethodDirectlyOrIndirectlyCache.put(type, true);
return true;
}
}
}
for (DexType subtype : allImmediateSubtypes(type)) {
if (computeMayHaveFinalizeMethodDirectlyOrIndirectlyIfAbsent(subtype, false)) {
mayHaveFinalizeMethodDirectlyOrIndirectlyCache.put(type, true);
return true;
}
}
mayHaveFinalizeMethodDirectlyOrIndirectlyCache.put(type, false);
return false;
}
}