blob: 400ce939b8fdb10bc66b625c8fb1390739a2f1ba [file] [log] [blame]
// Copyright (c) 2016, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8.shaking;
import static com.android.tools.r8.graph.FieldAccessInfoImpl.MISSING_FIELD_ACCESS_INFO;
import static com.android.tools.r8.naming.IdentifierNameStringUtils.identifyIdentifier;
import static com.android.tools.r8.naming.IdentifierNameStringUtils.isReflectionMethod;
import static com.android.tools.r8.shaking.AnnotationRemover.shouldKeepAnnotation;
import static com.android.tools.r8.shaking.EnqueuerUtils.toImmutableSortedMap;
import com.android.tools.r8.Diagnostic;
import com.android.tools.r8.dex.IndexedItemCollection;
import com.android.tools.r8.errors.Unreachable;
import com.android.tools.r8.experimental.graphinfo.GraphConsumer;
import com.android.tools.r8.graph.AppInfoWithSubtyping;
import com.android.tools.r8.graph.AppView;
import com.android.tools.r8.graph.Descriptor;
import com.android.tools.r8.graph.DexAnnotation;
import com.android.tools.r8.graph.DexCallSite;
import com.android.tools.r8.graph.DexClass;
import com.android.tools.r8.graph.DexDefinition;
import com.android.tools.r8.graph.DexEncodedField;
import com.android.tools.r8.graph.DexEncodedMethod;
import com.android.tools.r8.graph.DexField;
import com.android.tools.r8.graph.DexItem;
import com.android.tools.r8.graph.DexItemFactory;
import com.android.tools.r8.graph.DexLibraryClass;
import com.android.tools.r8.graph.DexMethod;
import com.android.tools.r8.graph.DexMethodHandle;
import com.android.tools.r8.graph.DexProgramClass;
import com.android.tools.r8.graph.DexProto;
import com.android.tools.r8.graph.DexReference;
import com.android.tools.r8.graph.DexString;
import com.android.tools.r8.graph.DexType;
import com.android.tools.r8.graph.FieldAccessInfoCollectionImpl;
import com.android.tools.r8.graph.FieldAccessInfoImpl;
import com.android.tools.r8.graph.KeyedDexItem;
import com.android.tools.r8.graph.PresortedComparable;
import com.android.tools.r8.graph.ResolutionResult;
import com.android.tools.r8.graph.ResolutionResult.SingleResolutionResult;
import com.android.tools.r8.graph.UseRegistry.MethodHandleUse;
import com.android.tools.r8.graph.analysis.EnqueuerAnalysis;
import com.android.tools.r8.ir.analysis.proto.ProtoEnqueuerUseRegistry;
import com.android.tools.r8.ir.analysis.proto.schema.ProtoEnqueuerExtension;
import com.android.tools.r8.ir.code.ArrayPut;
import com.android.tools.r8.ir.code.ConstantValueUtils;
import com.android.tools.r8.ir.code.IRCode;
import com.android.tools.r8.ir.code.Instruction;
import com.android.tools.r8.ir.code.InstructionIterator;
import com.android.tools.r8.ir.code.InvokeMethod;
import com.android.tools.r8.ir.code.InvokeVirtual;
import com.android.tools.r8.ir.code.Value;
import com.android.tools.r8.ir.desugar.DesugaredLibraryAPIConverter;
import com.android.tools.r8.ir.desugar.LambdaDescriptor;
import com.android.tools.r8.logging.Log;
import com.android.tools.r8.origin.Origin;
import com.android.tools.r8.shaking.EnqueuerWorklist.Action;
import com.android.tools.r8.shaking.GraphReporter.KeepReasonWitness;
import com.android.tools.r8.shaking.RootSetBuilder.ConsequentRootSet;
import com.android.tools.r8.shaking.RootSetBuilder.RootSet;
import com.android.tools.r8.shaking.ScopedDexMethodSet.AddMethodIfMoreVisibleResult;
import com.android.tools.r8.utils.InternalOptions;
import com.android.tools.r8.utils.SetUtils;
import com.android.tools.r8.utils.StringDiagnostic;
import com.android.tools.r8.utils.Timing;
import com.google.common.base.Equivalence.Wrapper;
import com.google.common.collect.ImmutableSortedSet;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import com.google.common.collect.Sets.SetView;
import it.unimi.dsi.fastutil.objects.Object2BooleanArrayMap;
import it.unimi.dsi.fastutil.objects.Object2BooleanMap;
import java.lang.reflect.InvocationHandler;
import java.util.ArrayDeque;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.SortedSet;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.function.BiConsumer;
import java.util.function.BiPredicate;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.stream.Collectors;
/**
* Approximates the runtime dependencies for the given set of roots.
* <p>
* <p>The implementation filters the static call-graph with liveness information on classes to
* remove virtual methods that are reachable by their static type but are unreachable at runtime as
* they are not visible from any instance.
* <p>
* <p>As result of the analysis, an instance of {@link AppInfoWithLiveness} is returned. See the
* field descriptions for details.
*/
public class Enqueuer {
public enum Mode {
INITIAL_TREE_SHAKING,
FINAL_TREE_SHAKING,
MAIN_DEX_TRACING,
WHY_ARE_YOU_KEEPING;
public boolean isInitialTreeShaking() {
return this == INITIAL_TREE_SHAKING;
}
public boolean isFinalTreeShaking() {
return this == FINAL_TREE_SHAKING;
}
public boolean isInitialOrFinalTreeShaking() {
return isInitialTreeShaking() || isFinalTreeShaking();
}
public boolean isTracingMainDex() {
return this == MAIN_DEX_TRACING;
}
}
private final boolean forceProguardCompatibility;
private final Mode mode;
private Set<EnqueuerAnalysis> analyses = Sets.newIdentityHashSet();
private final AppInfoWithSubtyping appInfo;
private final AppView<? extends AppInfoWithSubtyping> appView;
private final InternalOptions options;
private RootSet rootSet;
private ProguardClassFilter dontWarnPatterns;
private final EnqueuerUseRegistryFactory useRegistryFactory;
private final Map<DexMethod, Set<DexEncodedMethod>> virtualInvokes = new IdentityHashMap<>();
private final Map<DexMethod, Set<DexEncodedMethod>> interfaceInvokes = new IdentityHashMap<>();
private final Map<DexMethod, Set<DexEncodedMethod>> superInvokes = new IdentityHashMap<>();
private final Map<DexMethod, Set<DexEncodedMethod>> directInvokes = new IdentityHashMap<>();
private final Map<DexMethod, Set<DexEncodedMethod>> staticInvokes = new IdentityHashMap<>();
private final FieldAccessInfoCollectionImpl fieldAccessInfoCollection =
new FieldAccessInfoCollectionImpl();
private final Set<DexCallSite> callSites = Sets.newIdentityHashSet();
private final Set<DexReference> identifierNameStrings = Sets.newIdentityHashSet();
/**
* Set of method signatures used in invoke-super instructions that either cannot be resolved or
* resolve to a private method (leading to an IllegalAccessError).
*/
private final Set<DexMethod> brokenSuperInvokes = Sets.newIdentityHashSet();
/**
* This map keeps a view of all virtual methods that are reachable from virtual invokes. A method
* is reachable even if no live subtypes exist, so this is not sufficient for inclusion in the
* live set.
*/
private final Map<DexProgramClass, ReachableVirtualMethodsSet> reachableVirtualMethods =
Maps.newIdentityHashMap();
/**
* Tracks the dependency between a method and the super-method it calls, if any. Used to make
* super methods become live when they become reachable from a live sub-method.
*/
private final Map<DexEncodedMethod, Set<DexEncodedMethod>> superInvokeDependencies = Maps
.newIdentityHashMap();
/** Set of instance fields that can be reached by read/write operations. */
private final Map<DexProgramClass, SetWithReason<DexEncodedField>> reachableInstanceFields =
Maps.newIdentityHashMap();
/**
* Set of types that are mentioned in the program. We at least need an empty abstract class item
* for these.
*/
private final SetWithReportedReason<DexProgramClass> liveTypes;
/** Set of live types defined in the library and classpath. Used to avoid duplicate tracing. */
private final Set<DexClass> liveNonProgramTypes = Sets.newIdentityHashSet();
/** Mapping from each unused interface to the set of live types that implements the interface. */
private final Map<DexProgramClass, Set<DexProgramClass>> unusedInterfaceTypes =
new IdentityHashMap<>();
/** Set of annotation types that are instantiated. */
private final SetWithReason<DexAnnotation> liveAnnotations;
/** Set of types that are actually instantiated. These cannot be abstract. */
private final SetWithReason<DexProgramClass> instantiatedTypes;
/** Set of all types that are instantiated, directly or indirectly, thus may be abstract. */
private final Set<DexProgramClass> directAndIndirectlyInstantiatedTypes =
Sets.newIdentityHashSet();
/**
* Set of methods that are the immediate target of an invoke. They might not actually be live but
* are required so that invokes can find the method. If a method is only a target but not live,
* its implementation may be removed and it may be marked abstract.
*/
private final SetWithReason<DexEncodedMethod> targetedMethods;
/** Subset of 'targetedMethods' for which the method must not be marked abstract. */
private final Set<DexEncodedMethod> targetedMethodsThatMustRemainNonAbstract;
/**
* Set of program methods that are used as the bootstrap method for an invoke-dynamic instruction.
*/
private final Set<DexMethod> bootstrapMethods = Sets.newIdentityHashSet();
/**
* Set of direct methods that are the immediate target of an invoke-dynamic.
*/
private final Set<DexMethod> methodsTargetedByInvokeDynamic = Sets.newIdentityHashSet();
/**
* Set of direct lambda methods that are the immediate target of an invoke-dynamic.
*/
private final Set<DexMethod> lambdaMethodsTargetedByInvokeDynamic = Sets.newIdentityHashSet();
/**
* Set of virtual methods that are the immediate target of an invoke-direct.
*/
private final Set<DexMethod> virtualMethodsTargetedByInvokeDirect = Sets.newIdentityHashSet();
/**
* Set of methods that belong to live classes and can be reached by invokes. These need to be
* kept.
*/
private final LiveMethodsSet liveMethods;
/**
* Set of fields that belong to live classes and can be reached by invokes. These need to be kept.
*/
private final SetWithReason<DexEncodedField> liveFields;
/**
* Set of service types (from META-INF/services/) that may have been instantiated reflectively via
* ServiceLoader.load() or ServiceLoader.loadInstalled().
*/
private final Set<DexType> instantiatedAppServices = Sets.newIdentityHashSet();
/**
* Set of interface types for which there may be instantiations, such as lambda expressions or
* explicit keep rules.
*/
private final SetWithReason<DexProgramClass> instantiatedInterfaceTypes;
/** A queue of items that need processing. Different items trigger different actions. */
private final EnqueuerWorklist workList;
/**
* A set of methods that need code inspection for Java reflection in use.
*/
private final Set<DexEncodedMethod> pendingReflectiveUses = Sets.newLinkedHashSet();
/** A cache for DexMethod that have been marked reachable. */
private final Map<DexMethod, MarkedResolutionTarget> virtualTargetsMarkedAsReachable =
Maps.newIdentityHashMap();
/**
* A set of references we have reported missing to dedupe warnings.
*/
private final Set<DexReference> reportedMissing = Sets.newIdentityHashSet();
/**
* A set of references that we are keeping due to keep rules. This may differ from the root set
* due to dependent keep rules.
*/
private final Set<DexReference> pinnedItems = Sets.newIdentityHashSet();
/**
* A set of seen const-class references that both serve as an initial lock-candidate set and will
* prevent statically merging the classes referenced.
*/
private final Set<DexType> constClassReferences = Sets.newIdentityHashSet();
/**
* A map from classes to annotations that need to be processed should the classes ever become
* live.
*/
private final Map<DexType, Set<DexAnnotation>> deferredAnnotations = new IdentityHashMap<>();
/** Map of active if rules to speed up aapt2 generated keep rules. */
private Map<Wrapper<ProguardIfRule>, Set<ProguardIfRule>> activeIfRules;
/**
* A cache of ScopedDexMethodSet for each live type used for determining that virtual methods that
* cannot be removed because they are widening access for another virtual method defined earlier
* in the type hierarchy. See b/136698023 for more information.
*/
private final Map<DexType, ScopedDexMethodSet> scopedMethodsForLiveTypes =
new IdentityHashMap<>();
private final GraphReporter graphReporter;
Enqueuer(
AppView<? extends AppInfoWithSubtyping> appView,
GraphConsumer keptGraphConsumer,
Mode mode) {
assert appView.appServices() != null;
InternalOptions options = appView.options();
this.appInfo = appView.appInfo();
this.appView = appView;
this.forceProguardCompatibility = options.forceProguardCompatibility;
this.graphReporter = new GraphReporter(appView, keptGraphConsumer);
this.mode = mode;
this.options = options;
this.useRegistryFactory = createUseRegistryFactory();
this.workList = EnqueuerWorklist.createWorklist(appView);
if (options.protoShrinking().enableGeneratedMessageLiteShrinking
&& mode.isInitialOrFinalTreeShaking()) {
registerAnalysis(new ProtoEnqueuerExtension(appView));
}
liveTypes = new SetWithReportedReason<>();
liveAnnotations = new SetWithReason<>(graphReporter::registerAnnotation);
instantiatedTypes = new SetWithReason<>(graphReporter::registerClass);
targetedMethods = new SetWithReason<>(graphReporter::registerMethod);
// This set is only populated in edge cases due to multiple default interface methods.
// The set is generally expected to be empty and in the unlikely chance it is not, it will
// likely contain two methods. Thus the default capacity of 2.
targetedMethodsThatMustRemainNonAbstract = SetUtils.newIdentityHashSet(2);
liveMethods = new LiveMethodsSet(graphReporter::registerMethod);
liveFields = new SetWithReason<>(graphReporter::registerField);
instantiatedInterfaceTypes = new SetWithReason<>(graphReporter::registerInterface);
}
public Mode getMode() {
return mode;
}
public GraphReporter getGraphReporter() {
return graphReporter;
}
private EnqueuerUseRegistryFactory createUseRegistryFactory() {
if (mode.isFinalTreeShaking()) {
return appView.withGeneratedMessageLiteShrinker(
ignore -> ProtoEnqueuerUseRegistry.getFactory(), DefaultEnqueuerUseRegistry::new);
}
return DefaultEnqueuerUseRegistry::new;
}
public EnqueuerUseRegistryFactory getUseRegistryFactory() {
return useRegistryFactory;
}
public Enqueuer registerAnalysis(EnqueuerAnalysis analysis) {
this.analyses.add(analysis);
return this;
}
private boolean isProgramClass(DexType type) {
return getProgramClassOrNull(type) != null;
}
private DexProgramClass getProgramClassOrNull(DexType type) {
DexClass clazz = appView.definitionFor(type);
if (clazz != null) {
if (clazz.isProgramClass()) {
return clazz.asProgramClass();
}
if (liveNonProgramTypes.add(clazz) && clazz.isLibraryClass()) {
ensureMethodsContinueToWidenAccess(clazz);
warnIfLibraryTypeInheritsFromProgramType(clazz.asLibraryClass());
}
}
reportMissingClass(type);
return null;
}
private void warnIfLibraryTypeInheritsFromProgramType(DexLibraryClass clazz) {
if (clazz.superType != null) {
ensureFromLibraryOrThrow(clazz.superType, clazz);
}
for (DexType iface : clazz.interfaces.values) {
ensureFromLibraryOrThrow(iface, clazz);
}
}
private Set<DexField> getNonPinnedWrittenFields(Predicate<DexEncodedField> predicate) {
Set<DexField> result = Sets.newIdentityHashSet();
fieldAccessInfoCollection.forEach(
info -> {
if (info == MISSING_FIELD_ACCESS_INFO) {
return;
}
// Note that it is safe to use definitionFor() here, and not lookupField(), since the
// field held by `info` is a direct reference to the definition of the field.
DexEncodedField encodedField = appView.definitionFor(info.getField());
if (encodedField == null) {
assert false;
return;
}
if (encodedField.isProgramField(appInfo)
&& info.isWritten()
&& predicate.test(encodedField)) {
result.add(encodedField.field);
}
});
result.removeAll(
pinnedItems.stream()
.filter(DexReference::isDexField)
.map(DexReference::asDexField)
.collect(Collectors.toSet()));
return result;
}
private static <T> SetWithReason<T> newSetWithoutReasonReporter() {
return new SetWithReason<>((f, r) -> {});
}
private void enqueueRootItems(Map<DexReference, Set<ProguardKeepRuleBase>> items) {
items.entrySet().forEach(this::enqueueRootItem);
}
private void enqueueRootItem(Entry<DexReference, Set<ProguardKeepRuleBase>> root) {
DexDefinition item = appView.definitionFor(root.getKey());
if (item != null) {
enqueueRootItem(item, root.getValue());
} else {
// TODO(b/123923324): Verify that root items are present.
// assert false : "Expected root item `" + root.getKey().toSourceString() + "` to be present";
}
}
private void enqueueRootItem(DexDefinition item, Set<ProguardKeepRuleBase> rules) {
internalEnqueueRootItem(item, rules, null);
}
private void internalEnqueueRootItem(
DexDefinition item, Set<ProguardKeepRuleBase> rules, DexDefinition precondition) {
if (item.isDexClass()) {
DexProgramClass clazz = item.asDexClass().asProgramClass();
KeepReasonWitness witness = graphReporter.reportKeepClass(precondition, rules, clazz);
if (clazz.isInterface() && !clazz.accessFlags.isAnnotation()) {
markInterfaceAsInstantiated(clazz, witness);
} else {
workList.enqueueMarkInstantiatedAction(clazz, null, witness);
if (clazz.hasDefaultInitializer()) {
DexEncodedMethod defaultInitializer = clazz.getDefaultInitializer();
if (forceProguardCompatibility) {
workList.enqueueMarkMethodKeptAction(
clazz,
defaultInitializer,
graphReporter.reportCompatKeepDefaultInitializer(clazz, defaultInitializer));
}
if (clazz.isExternalizable(appView)) {
enqueueMarkMethodLiveAction(clazz, defaultInitializer, witness);
}
}
}
} else if (item.isDexEncodedField()) {
DexEncodedField dexEncodedField = item.asDexEncodedField();
DexProgramClass holder = getProgramClassOrNull(dexEncodedField.field.holder);
if (holder != null) {
workList.enqueueMarkFieldKeptAction(
holder,
dexEncodedField,
graphReporter.reportKeepField(precondition, rules, dexEncodedField));
}
} else if (item.isDexEncodedMethod()) {
DexEncodedMethod encodedMethod = item.asDexEncodedMethod();
DexProgramClass holder = getProgramClassOrNull(encodedMethod.method.holder);
if (holder != null) {
workList.enqueueMarkMethodKeptAction(
holder,
encodedMethod,
graphReporter.reportKeepMethod(precondition, rules, encodedMethod));
}
} else {
throw new IllegalArgumentException(item.toString());
}
pinnedItems.add(item.toReference());
}
private void markInterfaceAsInstantiated(DexProgramClass clazz, KeepReasonWitness witness) {
assert clazz.isInterface() && !clazz.accessFlags.isAnnotation();
if (!instantiatedInterfaceTypes.add(clazz, witness)) {
return;
}
populateInstantiatedTypesCache(clazz);
markTypeAsLive(clazz, witness);
}
private void enqueueFirstNonSerializableClassInitializer(
DexProgramClass clazz, KeepReason reason) {
assert clazz.isSerializable(appView);
// Climb up the class hierarchy. Break out if the definition is not found, or hit the library
// classes which are kept by definition, or encounter the first non-serializable class.
while (clazz.isSerializable(appView)) {
DexProgramClass superClass = getProgramClassOrNull(clazz.superType);
if (superClass == null) {
return;
}
clazz = superClass;
}
if (clazz.hasDefaultInitializer()) {
enqueueMarkMethodLiveAction(clazz, clazz.getDefaultInitializer(), reason);
}
}
// Utility to avoid adding to the worklist if already live.
private boolean enqueueMarkMethodLiveAction(
DexProgramClass clazz, DexEncodedMethod method, KeepReason reason) {
assert method.method.holder == clazz.type;
if (liveMethods.add(clazz, method, reason)) {
workList.enqueueMarkMethodLiveAction(clazz, method, reason);
return true;
}
return false;
}
private void compatEnqueueHolderIfDependentNonStaticMember(
DexClass holder, Set<ProguardKeepRuleBase> compatRules) {
if (!forceProguardCompatibility || compatRules == null) {
return;
}
enqueueRootItem(holder, compatRules);
}
//
// Things to do with registering events. This is essentially the interface for byte-code
// traversals.
//
private boolean registerMethodWithTargetAndContext(
Map<DexMethod, Set<DexEncodedMethod>> seen, DexMethod method, DexEncodedMethod context) {
DexType baseHolder = method.holder.toBaseType(appView.dexItemFactory());
if (baseHolder.isClassType()) {
markTypeAsLive(baseHolder, clazz -> graphReporter.reportClassReferencedFrom(clazz, context));
return seen.computeIfAbsent(method, ignore -> Sets.newIdentityHashSet()).add(context);
}
return false;
}
public boolean registerFieldRead(DexField field, DexEncodedMethod context) {
return registerFieldAccess(field, context, true);
}
public boolean registerFieldWrite(DexField field, DexEncodedMethod context) {
return registerFieldAccess(field, context, false);
}
public boolean registerFieldAccess(DexField field, DexEncodedMethod context) {
boolean changed = registerFieldAccess(field, context, true);
changed |= registerFieldAccess(field, context, false);
return changed;
}
private boolean registerFieldAccess(DexField field, DexEncodedMethod context, boolean isRead) {
FieldAccessInfoImpl info = fieldAccessInfoCollection.get(field);
if (info == null) {
DexEncodedField encodedField = appInfo.resolveField(field);
// If the field does not exist, then record this in the mapping, such that we don't have to
// resolve the field the next time.
if (encodedField == null) {
fieldAccessInfoCollection.extend(field, MISSING_FIELD_ACCESS_INFO);
return true;
}
// Check if we have previously created a FieldAccessInfo object for the field definition.
info = fieldAccessInfoCollection.get(encodedField.field);
// If not, we must create one.
if (info == null) {
info = new FieldAccessInfoImpl(encodedField.field);
fieldAccessInfoCollection.extend(encodedField.field, info);
}
// If `field` is an indirect reference, then create a mapping for it, such that we don't have
// to resolve the field the next time we see the reference.
if (field != encodedField.field) {
fieldAccessInfoCollection.extend(field, info);
}
} else if (info == MISSING_FIELD_ACCESS_INFO) {
return false;
}
return isRead ? info.recordRead(field, context) : info.recordWrite(field, context);
}
void traceCallSite(DexCallSite callSite, DexEncodedMethod currentMethod) {
callSites.add(callSite);
List<DexType> directInterfaces = LambdaDescriptor.getInterfaces(callSite, appInfo);
if (directInterfaces != null) {
for (DexType lambdaInstantiatedInterface : directInterfaces) {
markLambdaInstantiated(lambdaInstantiatedInterface, currentMethod);
}
} else {
if (!appInfo.isStringConcat(callSite.bootstrapMethod)) {
if (options.reporter != null) {
Diagnostic message =
new StringDiagnostic(
"Unknown bootstrap method " + callSite.bootstrapMethod,
appInfo.originFor(currentMethod.method.holder));
options.reporter.warning(message);
}
}
}
DexProgramClass bootstrapClass =
getProgramClassOrNull(callSite.bootstrapMethod.asMethod().holder);
if (bootstrapClass != null) {
bootstrapMethods.add(callSite.bootstrapMethod.asMethod());
}
LambdaDescriptor descriptor = LambdaDescriptor.tryInfer(callSite, appInfo);
if (descriptor == null) {
return;
}
// For call sites representing a lambda, we link the targeted method
// or field as if it were referenced from the current method.
DexMethodHandle implHandle = descriptor.implHandle;
assert implHandle != null;
DexMethod method = implHandle.asMethod();
if (descriptor.delegatesToLambdaImplMethod()) {
lambdaMethodsTargetedByInvokeDynamic.add(method);
}
if (!methodsTargetedByInvokeDynamic.add(method)) {
return;
}
switch (implHandle.type) {
case INVOKE_STATIC:
traceInvokeStaticFromLambda(method, currentMethod);
break;
case INVOKE_INTERFACE:
traceInvokeInterfaceFromLambda(method, currentMethod);
break;
case INVOKE_INSTANCE:
traceInvokeVirtualFromLambda(method, currentMethod);
break;
case INVOKE_DIRECT:
traceInvokeDirectFromLambda(method, currentMethod);
break;
case INVOKE_CONSTRUCTOR:
traceNewInstanceFromLambda(method.holder, currentMethod);
break;
default:
throw new Unreachable();
}
// In similar way as what transitionMethodsForInstantiatedClass does for existing
// classes we need to process classes dynamically created by runtime for lambdas.
// We make an assumption that such classes are inherited directly from java.lang.Object
// and implement all lambda interfaces.
if (directInterfaces == null) {
return;
}
// The set now contains all virtual methods on the type and its supertype that are reachable.
// In a second step, we now look at interfaces. We have to do this in this order due to JVM
// semantics for default methods. A default method is only reachable if it is not overridden
// in any superclass. Also, it is not defined which default method is chosen if multiple
// interfaces define the same default method. Hence, for every interface (direct or indirect),
// we have to look at the interface chain and mark default methods as reachable, not taking
// the shadowing of other interface chains into account.
// See https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3
ScopedDexMethodSet seen = new ScopedDexMethodSet();
for (DexType iface : directInterfaces) {
DexProgramClass ifaceClazz = getProgramClassOrNull(iface);
if (ifaceClazz != null) {
transitionDefaultMethodsForInstantiatedClass(iface, seen);
}
}
}
boolean traceCheckCast(DexType type, DexEncodedMethod currentMethod) {
return traceConstClassOrCheckCast(type, currentMethod);
}
boolean traceConstClass(DexType type, DexEncodedMethod currentMethod) {
// We conservatively group T.class and T[].class to ensure that we do not merge T with S if
// potential locks on T[].class and S[].class exists.
DexType baseType = type.toBaseType(appView.dexItemFactory());
if (baseType.isClassType()) {
DexProgramClass baseClass = getProgramClassOrNull(baseType);
if (baseClass != null) {
constClassReferences.add(baseType);
}
}
return traceConstClassOrCheckCast(type, currentMethod);
}
private boolean traceConstClassOrCheckCast(DexType type, DexEncodedMethod currentMethod) {
if (!forceProguardCompatibility) {
return traceTypeReference(type, currentMethod);
}
DexType baseType = type.toBaseType(appView.dexItemFactory());
if (baseType.isClassType()) {
DexProgramClass baseClass = getProgramClassOrNull(baseType);
if (baseClass != null) {
// Don't require any constructor, see b/112386012.
markClassAsInstantiatedWithCompatRule(
baseClass, graphReporter.reportCompatInstantiated(baseClass, currentMethod));
}
return true;
}
return false;
}
void traceMethodHandle(
DexMethodHandle methodHandle, MethodHandleUse use, DexEncodedMethod currentMethod) {
// If a method handle is not an argument to a lambda metafactory it could flow to a
// MethodHandle.invokeExact invocation. For that to work, the receiver type cannot have
// changed and therefore we cannot perform member rebinding. For these handles, we maintain
// the receiver for the method handle. Therefore, we have to make sure that the receiver
// stays in the output (and is not class merged). To ensure that we treat the receiver
// as instantiated.
if (methodHandle.isMethodHandle() && use != MethodHandleUse.ARGUMENT_TO_LAMBDA_METAFACTORY) {
DexType type = methodHandle.asMethod().holder;
DexProgramClass clazz = getProgramClassOrNull(type);
if (clazz != null) {
KeepReason reason = KeepReason.methodHandleReferencedIn(currentMethod);
if (clazz.isInterface() && !clazz.accessFlags.isAnnotation()) {
markInterfaceAsInstantiated(clazz, graphReporter.registerClass(clazz, reason));
} else {
markInstantiated(clazz, null, reason);
}
}
}
}
boolean traceTypeReference(DexType type, DexEncodedMethod currentMethod) {
markTypeAsLive(type, classReferencedFromReporter(currentMethod));
return true;
}
boolean traceInvokeDirect(
DexMethod invokedMethod, DexProgramClass currentHolder, DexEncodedMethod currentMethod) {
return traceInvokeDirect(
invokedMethod, currentMethod, KeepReason.invokedFrom(currentHolder, currentMethod));
}
boolean traceInvokeDirectFromLambda(DexMethod invokedMethod, DexEncodedMethod currentMethod) {
return traceInvokeDirect(
invokedMethod, currentMethod, KeepReason.invokedFromLambdaCreatedIn(currentMethod));
}
private boolean traceInvokeDirect(
DexMethod invokedMethod, DexEncodedMethod currentMethod, KeepReason reason) {
if (!registerMethodWithTargetAndContext(directInvokes, invokedMethod, currentMethod)) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register invokeDirect `%s`.", invokedMethod);
}
handleInvokeOfDirectTarget(invokedMethod, reason);
return true;
}
boolean traceInvokeInterface(
DexMethod invokedMethod, DexProgramClass currentHolder, DexEncodedMethod currentMethod) {
return traceInvokeInterface(
invokedMethod, currentMethod, KeepReason.invokedFrom(currentHolder, currentMethod));
}
boolean traceInvokeInterfaceFromLambda(DexMethod invokedMethod, DexEncodedMethod currentMethod) {
return traceInvokeInterface(
invokedMethod, currentMethod, KeepReason.invokedFromLambdaCreatedIn(currentMethod));
}
private boolean traceInvokeInterface(
DexMethod method, DexEncodedMethod currentMethod, KeepReason keepReason) {
if (!registerMethodWithTargetAndContext(interfaceInvokes, method, currentMethod)) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register invokeInterface `%s`.", method);
}
workList.enqueueMarkReachableInterfaceAction(method, keepReason);
return true;
}
boolean traceInvokeStatic(
DexMethod invokedMethod, DexProgramClass currentHolder, DexEncodedMethod currentMethod) {
return traceInvokeStatic(
invokedMethod, currentMethod, KeepReason.invokedFrom(currentHolder, currentMethod));
}
boolean traceInvokeStaticFromLambda(DexMethod invokedMethod, DexEncodedMethod currentMethod) {
return traceInvokeStatic(
invokedMethod, currentMethod, KeepReason.invokedFromLambdaCreatedIn(currentMethod));
}
private boolean traceInvokeStatic(
DexMethod invokedMethod, DexEncodedMethod currentMethod, KeepReason reason) {
DexItemFactory dexItemFactory = appView.dexItemFactory();
if (dexItemFactory.classMethods.isReflectiveClassLookup(invokedMethod)
|| dexItemFactory.atomicFieldUpdaterMethods.isFieldUpdater(invokedMethod)) {
// Implicitly add -identifiernamestring rule for the Java reflection in use.
identifierNameStrings.add(invokedMethod);
// Revisit the current method to implicitly add -keep rule for items with reflective access.
pendingReflectiveUses.add(currentMethod);
}
// See comment in handleJavaLangEnumValueOf.
if (invokedMethod == dexItemFactory.enumMethods.valueOf) {
pendingReflectiveUses.add(currentMethod);
}
// Handling of application services.
if (dexItemFactory.serviceLoaderMethods.isLoadMethod(invokedMethod)) {
pendingReflectiveUses.add(currentMethod);
}
if (invokedMethod == dexItemFactory.proxyMethods.newProxyInstance) {
pendingReflectiveUses.add(currentMethod);
}
if (!registerMethodWithTargetAndContext(staticInvokes, invokedMethod, currentMethod)) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register invokeStatic `%s`.", invokedMethod);
}
handleInvokeOfStaticTarget(invokedMethod, reason);
return true;
}
boolean traceInvokeSuper(
DexMethod invokedMethod, DexProgramClass currentHolder, DexEncodedMethod currentMethod) {
// We have to revisit super invokes based on the context they are found in. The same
// method descriptor will hit different targets, depending on the context it is used in.
DexMethod actualTarget = getInvokeSuperTarget(invokedMethod, currentMethod);
if (!registerMethodWithTargetAndContext(superInvokes, invokedMethod, currentMethod)) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register invokeSuper `%s`.", actualTarget);
}
workList.enqueueMarkReachableSuperAction(invokedMethod, currentMethod);
return true;
}
boolean traceInvokeVirtual(
DexMethod invokedMethod, DexProgramClass currentHolder, DexEncodedMethod currentMethod) {
return traceInvokeVirtual(
invokedMethod, currentMethod, KeepReason.invokedFrom(currentHolder, currentMethod));
}
boolean traceInvokeVirtualFromLambda(DexMethod invokedMethod, DexEncodedMethod currentMethod) {
return traceInvokeVirtual(
invokedMethod, currentMethod, KeepReason.invokedFromLambdaCreatedIn(currentMethod));
}
private boolean traceInvokeVirtual(
DexMethod invokedMethod, DexEncodedMethod currentMethod, KeepReason reason) {
if (invokedMethod == appView.dexItemFactory().classMethods.newInstance
|| invokedMethod == appView.dexItemFactory().constructorMethods.newInstance) {
pendingReflectiveUses.add(currentMethod);
} else if (appView.dexItemFactory().classMethods.isReflectiveMemberLookup(invokedMethod)) {
// Implicitly add -identifiernamestring rule for the Java reflection in use.
identifierNameStrings.add(invokedMethod);
// Revisit the current method to implicitly add -keep rule for items with reflective access.
pendingReflectiveUses.add(currentMethod);
}
if (!registerMethodWithTargetAndContext(virtualInvokes, invokedMethod, currentMethod)) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register invokeVirtual `%s`.", invokedMethod);
}
workList.enqueueMarkReachableVirtualAction(invokedMethod, reason);
return true;
}
boolean traceNewInstance(DexType type, DexEncodedMethod currentMethod) {
return traceNewInstance(type, currentMethod, KeepReason.instantiatedIn(currentMethod));
}
boolean traceNewInstanceFromLambda(DexType type, DexEncodedMethod currentMethod) {
return traceNewInstance(
type, currentMethod, KeepReason.invokedFromLambdaCreatedIn(currentMethod));
}
private boolean traceNewInstance(
DexType type, DexEncodedMethod currentMethod, KeepReason keepReason) {
DexProgramClass clazz = getProgramClassOrNull(type);
if (clazz != null) {
if (clazz.isInterface()) {
markTypeAsLive(clazz, graphReporter.registerClass(clazz, keepReason));
} else {
markInstantiated(clazz, currentMethod, keepReason);
}
}
return true;
}
boolean traceInstanceFieldRead(DexField field, DexEncodedMethod currentMethod) {
if (!registerFieldRead(field, currentMethod)) {
return false;
}
// Must mark the field as targeted even if it does not exist.
markFieldAsTargeted(field, currentMethod);
DexEncodedField encodedField = appInfo.resolveField(field);
if (encodedField == null) {
reportMissingField(field);
return false;
}
DexProgramClass clazz = getProgramClassOrNull(encodedField.field.holder);
if (clazz == null) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register Iget `%s`.", field);
}
// If unused interface removal is enabled, then we won't necessarily mark the actual holder of
// the field as live, if the holder is an interface.
if (appView.options().enableUnusedInterfaceRemoval) {
if (encodedField.field != field) {
markTypeAsLive(clazz, graphReporter.reportClassReferencedFrom(clazz, currentMethod));
markTypeAsLive(encodedField.field.type, classReferencedFromReporter(currentMethod));
}
}
workList.enqueueMarkReachableFieldAction(
clazz, encodedField, KeepReason.fieldReferencedIn(currentMethod));
return true;
}
boolean traceInstanceFieldWrite(DexField field, DexEncodedMethod currentMethod) {
if (!registerFieldWrite(field, currentMethod)) {
return false;
}
// Must mark the field as targeted even if it does not exist.
markFieldAsTargeted(field, currentMethod);
DexEncodedField encodedField = appInfo.resolveField(field);
if (encodedField == null) {
reportMissingField(field);
return false;
}
DexProgramClass clazz = getProgramClassOrNull(encodedField.field.holder);
if (clazz == null) {
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register Iput `%s`.", field);
}
// If unused interface removal is enabled, then we won't necessarily mark the actual holder of
// the field as live, if the holder is an interface.
if (appView.options().enableUnusedInterfaceRemoval) {
if (encodedField.field != field) {
markTypeAsLive(clazz, graphReporter.reportClassReferencedFrom(clazz, currentMethod));
markTypeAsLive(encodedField.field.type, classReferencedFromReporter(currentMethod));
}
}
KeepReason reason = KeepReason.fieldReferencedIn(currentMethod);
workList.enqueueMarkReachableFieldAction(clazz, encodedField, reason);
return true;
}
boolean traceStaticFieldRead(DexField field, DexEncodedMethod currentMethod) {
if (!registerFieldRead(field, currentMethod)) {
return false;
}
DexEncodedField encodedField = appInfo.resolveField(field);
if (encodedField == null) {
// Must mark the field as targeted even if it does not exist.
markFieldAsTargeted(field, currentMethod);
reportMissingField(field);
return false;
}
if (!isProgramClass(encodedField.field.holder)) {
// No need to trace into the non-program code.
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register Sget `%s`.", field);
}
if (appView.options().protoShrinking().enableGeneratedExtensionRegistryShrinking) {
// If it is a dead proto extension field, don't trace onwards.
boolean skipTracing =
appView.withGeneratedExtensionRegistryShrinker(
shrinker ->
shrinker.isDeadProtoExtensionField(
encodedField, fieldAccessInfoCollection, pinnedItems),
false);
if (skipTracing) {
return false;
}
}
if (encodedField.field != field) {
// Mark the non-rebound field access as targeted. Note that this should only be done if the
// field is not a dead proto field (in which case we bail-out above).
markFieldAsTargeted(field, currentMethod);
}
markStaticFieldAsLive(encodedField, KeepReason.fieldReferencedIn(currentMethod));
return true;
}
boolean traceStaticFieldWrite(DexField field, DexEncodedMethod currentMethod) {
if (!registerFieldWrite(field, currentMethod)) {
return false;
}
DexEncodedField encodedField = appInfo.resolveField(field);
if (encodedField == null) {
// Must mark the field as targeted even if it does not exist.
markFieldAsTargeted(field, currentMethod);
reportMissingField(field);
return false;
}
if (!isProgramClass(encodedField.field.holder)) {
// No need to trace into the non-program code.
return false;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Register Sput `%s`.", field);
}
if (appView.options().protoShrinking().enableGeneratedExtensionRegistryShrinking) {
// If it is a dead proto extension field, don't trace onwards.
boolean skipTracing =
appView.withGeneratedExtensionRegistryShrinker(
shrinker ->
shrinker.isDeadProtoExtensionField(
encodedField, fieldAccessInfoCollection, pinnedItems),
false);
if (skipTracing) {
return false;
}
}
if (encodedField.field != field) {
// Mark the non-rebound field access as targeted. Note that this should only be done if the
// field is not a dead proto field (in which case we bail-out above).
markFieldAsTargeted(field, currentMethod);
}
markStaticFieldAsLive(encodedField, KeepReason.fieldReferencedIn(currentMethod));
return true;
}
private Function<DexProgramClass, KeepReasonWitness> classReferencedFromReporter(
DexEncodedMethod currentMethod) {
return clazz -> graphReporter.reportClassReferencedFrom(clazz, currentMethod);
}
private void transitionReachableVirtualMethods(DexProgramClass clazz, ScopedDexMethodSet seen) {
ReachableVirtualMethodsSet reachableMethods = reachableVirtualMethods.get(clazz);
if (reachableMethods != null) {
transitionNonAbstractMethodsToLiveAndShadow(clazz, reachableMethods, seen);
}
}
private DexMethod getInvokeSuperTarget(DexMethod method, DexEncodedMethod currentMethod) {
DexClass methodHolderClass = appView.definitionFor(method.holder);
if (methodHolderClass != null && methodHolderClass.isInterface()) {
return method;
}
DexClass holderClass = appView.definitionFor(currentMethod.method.holder);
if (holderClass == null || holderClass.superType == null || holderClass.isInterface()) {
// We do not know better or this call is made from an interface.
return method;
}
// Return the invoked method on the supertype.
return appView.dexItemFactory().createMethod(holderClass.superType, method.proto, method.name);
}
//
// Actual actions performed.
//
private boolean verifyMethodIsTargeted(DexEncodedMethod method) {
assert !method.isClassInitializer() : "Class initializers are never targeted";
assert targetedMethods.contains(method);
return true;
}
private boolean verifyTypeIsLive(DexProgramClass clazz) {
assert liveTypes.contains(clazz);
return true;
}
private void markTypeAsLive(DexType type, KeepReason reason) {
if (type.isArrayType()) {
markTypeAsLive(type.toBaseType(appView.dexItemFactory()), reason);
return;
}
if (!type.isClassType()) {
// Ignore primitive types.
return;
}
DexProgramClass holder = getProgramClassOrNull(type);
if (holder == null) {
return;
}
markTypeAsLive(
holder,
scopedMethodsForLiveTypes.computeIfAbsent(type, ignore -> new ScopedDexMethodSet()),
graphReporter.registerClass(holder, reason));
}
private void markTypeAsLive(DexType type, Function<DexProgramClass, KeepReasonWitness> reason) {
if (type.isArrayType()) {
markTypeAsLive(type.toBaseType(appView.dexItemFactory()), reason);
return;
}
if (!type.isClassType()) {
// Ignore primitive types.
return;
}
DexProgramClass holder = getProgramClassOrNull(type);
if (holder == null) {
return;
}
markTypeAsLive(
holder,
scopedMethodsForLiveTypes.computeIfAbsent(type, ignore -> new ScopedDexMethodSet()),
reason.apply(holder));
}
private void markTypeAsLive(DexProgramClass clazz, KeepReasonWitness witness) {
markTypeAsLive(
clazz,
scopedMethodsForLiveTypes.computeIfAbsent(clazz.type, ignore -> new ScopedDexMethodSet()),
witness);
}
private void markTypeAsLive(
DexProgramClass holder, ScopedDexMethodSet seen, KeepReasonWitness witness) {
if (!liveTypes.add(holder, witness)) {
return;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Type `%s` has become live.", holder.type);
}
KeepReason reason = KeepReason.reachableFromLiveType(holder.type);
for (DexType iface : holder.interfaces.values) {
markInterfaceTypeAsLiveViaInheritanceClause(iface, holder);
}
if (holder.superType != null) {
ScopedDexMethodSet seenForSuper =
scopedMethodsForLiveTypes.computeIfAbsent(
holder.superType, ignore -> new ScopedDexMethodSet());
seen.setParent(seenForSuper);
markTypeAsLive(holder.superType, reason);
}
// If this is an interface that has just become live, then report previously seen but unreported
// implemented-by edges.
transitionUnusedInterfaceToLive(holder);
// We cannot remove virtual methods defined earlier in the type hierarchy if it is widening
// access and is defined in an interface:
//
// public interface I {
// void clone();
// }
//
// class Model implements I {
// public void clone() { ... } <-- this cannot be removed
// }
//
// Any class loading of Model with Model.clone() removed will result in an illegal access
// error because their exists an existing implementation (here it is Object.clone()). This is
// only a problem in the DEX VM. We have to make this check no matter the output because
// CF libraries can be used by Android apps. See b/136698023 for more information.
ensureMethodsContinueToWidenAccess(holder, seen, reason);
// We also need to add the corresponding <clinit> to the set of live methods, as otherwise
// static field initialization (and other class-load-time sideeffects) will not happen.
if (holder.hasClassInitializer()) {
DexEncodedMethod clinit = holder.getClassInitializer();
if (clinit != null && clinit.getOptimizationInfo().mayHaveSideEffects()) {
assert clinit.method.holder == holder.type;
markDirectStaticOrConstructorMethodAsLive(holder, clinit, reason);
}
}
if (holder.isSerializable(appView)) {
enqueueFirstNonSerializableClassInitializer(holder, reason);
}
if (!holder.annotations.isEmpty()) {
processAnnotations(holder, holder.annotations.annotations);
}
// If this type has deferred annotations, we have to process those now, too.
Set<DexAnnotation> annotations = deferredAnnotations.remove(holder.type);
if (annotations != null && !annotations.isEmpty()) {
assert holder.accessFlags.isAnnotation();
assert annotations.stream().allMatch(a -> a.annotation.type == holder.type);
annotations.forEach(annotation -> handleAnnotation(holder, annotation));
}
rootSet.forEachDependentStaticMember(holder, appView, this::enqueueDependentItem);
compatEnqueueHolderIfDependentNonStaticMember(
holder, rootSet.getDependentKeepClassCompatRule(holder.getType()));
}
private void ensureMethodsContinueToWidenAccess(DexClass clazz) {
assert !clazz.isProgramClass();
ScopedDexMethodSet seen =
scopedMethodsForLiveTypes.computeIfAbsent(clazz.type, ignore -> new ScopedDexMethodSet());
clazz.virtualMethods().forEach(seen::addMethodIfMoreVisible);
}
private void ensureMethodsContinueToWidenAccess(
DexProgramClass clazz, ScopedDexMethodSet seen, KeepReason reason) {
for (DexEncodedMethod method : clazz.virtualMethods()) {
if (seen.addMethodIfMoreVisible(method) == AddMethodIfMoreVisibleResult.ADDED_MORE_VISIBLE
&& clazz.isProgramClass()
&& appView.appInfo().methodDefinedInInterfaces(method, clazz.type)) {
markMethodAsTargeted(clazz, method, reason);
}
}
}
private void markInterfaceTypeAsLiveViaInheritanceClause(
DexType type, DexProgramClass implementer) {
DexProgramClass clazz = getProgramClassOrNull(type);
if (clazz == null) {
return;
}
if (!appView.options().enableUnusedInterfaceRemoval || mode.isTracingMainDex()) {
markTypeAsLive(clazz, graphReporter.reportClassReferencedFrom(clazz, implementer));
} else {
if (liveTypes.contains(clazz)) {
// The interface is already live, so make sure to report this implements-edge.
graphReporter.reportClassReferencedFrom(clazz, implementer);
} else {
// No need to mark the type as live. If an interface type is only reachable via the
// inheritance clause of another type it can simply be removed from the inheritance clause.
// The interface is needed if it has a live default interface method or field, though.
// Therefore, we record that this implemented-by edge has not been reported, such that we
// can report it in the future if one its members becomes live.
unusedInterfaceTypes
.computeIfAbsent(clazz, ignore -> Sets.newIdentityHashSet())
.add(implementer);
}
}
}
private void enqueueDependentItem(
DexDefinition precondition, DexDefinition consequent, Set<ProguardKeepRuleBase> reasons) {
internalEnqueueRootItem(consequent, reasons, precondition);
}
private void processAnnotations(DexDefinition holder, DexAnnotation[] annotations) {
for (DexAnnotation annotation : annotations) {
processAnnotation(holder, annotation);
}
}
private void processAnnotation(DexDefinition holder, DexAnnotation annotation) {
handleAnnotation(holder, annotation);
}
private void handleAnnotation(DexDefinition holder, DexAnnotation annotation) {
assert !holder.isDexClass() || holder.asDexClass().isProgramClass();
DexType type = annotation.annotation.type;
DexClass clazz = appView.definitionFor(type);
boolean annotationTypeIsLibraryClass = clazz == null || clazz.isNotProgramClass();
boolean isLive = annotationTypeIsLibraryClass || liveTypes.contains(clazz.asProgramClass());
if (!shouldKeepAnnotation(annotation, isLive, appView.dexItemFactory(), options)) {
// Remember this annotation for later.
if (!annotationTypeIsLibraryClass) {
deferredAnnotations.computeIfAbsent(type, ignore -> new HashSet<>()).add(annotation);
}
return;
}
KeepReason reason = KeepReason.annotatedOn(holder);
liveAnnotations.add(annotation, reason);
AnnotationReferenceMarker referenceMarker =
new AnnotationReferenceMarker(annotation.annotation.type, appView.dexItemFactory(), reason);
annotation.annotation.collectIndexedItems(referenceMarker);
}
private void handleInvokeOfStaticTarget(DexMethod method, KeepReason reason) {
ResolutionResult resolutionResult = appInfo.resolveMethod(method.holder, method);
if (resolutionResult == null) {
reportMissingMethod(method);
return;
}
DexEncodedMethod encodedMethod = resolutionResult.getSingleTarget();
if (encodedMethod == null) {
// Note: should this be reported too? Or is this unreachable?
return;
}
DexProgramClass clazz = getProgramClassOrNull(encodedMethod.method.holder);
if (clazz == null) {
return;
}
// We have to mark the resolved method as targeted even if it cannot actually be invoked
// to make sure the invocation will keep failing in the appropriate way.
markMethodAsTargeted(clazz, encodedMethod, reason);
// Only mark methods for which invocation will succeed at runtime live.
if (encodedMethod.isStatic()) {
registerClassInitializer(clazz, reason);
markDirectStaticOrConstructorMethodAsLive(clazz, encodedMethod, reason);
}
}
private void registerClassInitializer(DexProgramClass definition, KeepReason reason) {
if (definition.hasClassInitializer()) {
graphReporter.registerMethod(definition.getClassInitializer(), reason);
}
}
// Package protected due to entry point from worklist.
void markNonStaticDirectMethodAsReachable(DexMethod method, KeepReason reason) {
handleInvokeOfDirectTarget(method, reason);
}
private void handleInvokeOfDirectTarget(DexMethod method, KeepReason reason) {
DexType holder = method.holder;
DexProgramClass clazz = getProgramClassOrNull(holder);
if (clazz == null) {
return;
}
// TODO(zerny): Is it ok that we lookup in both the direct and virtual pool here?
DexEncodedMethod encodedMethod = clazz.lookupMethod(method);
if (encodedMethod == null) {
reportMissingMethod(method);
return;
}
// We have to mark the resolved method as targeted even if it cannot actually be invoked
// to make sure the invocation will keep failing in the appropriate way.
markMethodAsTargeted(clazz, encodedMethod, reason);
// Only mark methods for which invocation will succeed at runtime live.
if (encodedMethod.isStatic()) {
return;
}
markDirectStaticOrConstructorMethodAsLive(clazz, encodedMethod, reason);
// It is valid to have an invoke-direct instruction in a default interface method that
// targets another default method in the same interface (see testInvokeSpecialToDefault-
// Method). In a class, that would lead to a verification error.
if (encodedMethod.isVirtualMethod()
&& virtualMethodsTargetedByInvokeDirect.add(encodedMethod.method)) {
enqueueMarkMethodLiveAction(clazz, encodedMethod, reason);
}
}
private void ensureFromLibraryOrThrow(DexType type, DexClass context) {
if (!mode.isInitialTreeShaking()) {
// b/72312389: android.jar contains parts of JUnit and most developers include JUnit in
// their programs. This leads to library classes extending program classes. When tracing
// main dex lists we allow this.
return;
}
if (dontWarnPatterns.matches(context.type)) {
// Ignore.
return;
}
DexClass holder = appView.definitionFor(type);
if (holder != null && !holder.isLibraryClass()) {
Diagnostic message =
new StringDiagnostic(
"Library class "
+ context.type.toSourceString()
+ (holder.isInterface() ? " implements " : " extends ")
+ "program class "
+ type.toSourceString());
if (forceProguardCompatibility) {
options.reporter.warning(message);
} else {
options.reporter.error(message);
}
}
}
private void reportMissingClass(DexType clazz) {
if (Log.ENABLED && reportedMissing.add(clazz)) {
Log.verbose(Enqueuer.class, "Class `%s` is missing.", clazz);
}
}
private void reportMissingMethod(DexMethod method) {
if (Log.ENABLED && reportedMissing.add(method)) {
Log.verbose(Enqueuer.class, "Method `%s` is missing.", method);
}
}
private void reportMissingField(DexField field) {
if (Log.ENABLED && reportedMissing.add(field)) {
Log.verbose(Enqueuer.class, "Field `%s` is missing.", field);
}
}
private void markMethodAsTargeted(
DexProgramClass clazz, DexEncodedMethod method, KeepReason reason) {
assert method.method.holder == clazz.type;
if (!targetedMethods.add(method, reason)) {
// Already targeted.
return;
}
markReferencedTypesAsLive(method);
processAnnotations(method, method.annotations.annotations);
method.parameterAnnotationsList.forEachAnnotation(
annotation -> processAnnotation(method, annotation));
if (Log.ENABLED) {
Log.verbose(getClass(), "Method `%s` is targeted.", method.method);
}
if (forceProguardCompatibility) {
// Keep targeted default methods in compatibility mode. The tree pruner will otherwise make
// these methods abstract, whereas Proguard does not (seem to) touch their code.
if (!method.accessFlags.isAbstract() && clazz.isInterface()) {
markMethodAsLiveWithCompatRule(clazz, method);
}
}
}
/**
* Adds the class to the set of instantiated classes and marks its fields and methods live
* depending on the currently seen invokes and field reads.
*/
// Package protected due to entry point from worklist.
void processNewlyInstantiatedClass(
DexProgramClass clazz, DexEncodedMethod context, KeepReason reason) {
assert !clazz.isInterface() || clazz.accessFlags.isAnnotation();
// Notify analyses. This is done even if `clazz` has already been marked as instantiated,
// because each analysis may depend on seeing all the (clazz, reason) pairs. Thus, not doing so
// could lead to nondeterminism.
analyses.forEach(
analysis -> analysis.processNewlyInstantiatedClass(clazz.asProgramClass(), context));
if (!instantiatedTypes.add(clazz, reason)) {
return;
}
populateInstantiatedTypesCache(clazz);
if (Log.ENABLED) {
Log.verbose(getClass(), "Class `%s` is instantiated, processing...", clazz);
}
// This class becomes live, so it and all its supertypes become live types.
markTypeAsLive(clazz, graphReporter.registerClass(clazz, reason));
// For all methods of the class, if we have seen a call, mark the method live.
// We only do this for virtual calls, as the other ones will be done directly.
transitionMethodsForInstantiatedClass(clazz);
// For all instance fields visible from the class, mark them live if we have seen a read.
transitionFieldsForInstantiatedClass(clazz);
// Add all dependent instance members to the workqueue.
transitionDependentItemsForInstantiatedClass(clazz);
}
private void populateInstantiatedTypesCache(DexProgramClass clazz) {
if (!directAndIndirectlyInstantiatedTypes.add(clazz)) {
return;
}
if (clazz.superType != null) {
DexProgramClass superClass = getProgramClassOrNull(clazz.superType);
if (superClass != null) {
populateInstantiatedTypesCache(superClass);
}
}
for (DexType iface : clazz.interfaces.values) {
DexProgramClass ifaceClass = getProgramClassOrNull(iface);
if (ifaceClass != null) {
populateInstantiatedTypesCache(ifaceClass);
}
}
}
/**
* Marks all methods live that can be reached by calls previously seen.
*
* <p>This should only be invoked if the given type newly becomes instantiated. In essence, this
* method replays all the invokes we have seen so far that could apply to this type and marks the
* corresponding methods live.
*
* <p>Only methods that are visible in this type are considered. That is, only those methods that
* are either defined directly on this type or that are defined on a supertype but are not
* shadowed by another inherited method. Furthermore, default methods from implemented interfaces
* that are not otherwise shadowed are considered, too.
*
* <p>Finally all methods on library types that resolve starting at the instantiated type are
* marked live.
*/
private void transitionMethodsForInstantiatedClass(DexProgramClass instantiatedClass) {
ScopedDexMethodSet seen = new ScopedDexMethodSet();
Set<DexType> interfaces = Sets.newIdentityHashSet();
DexProgramClass current = instantiatedClass;
do {
// We only have to look at virtual methods here, as only those can actually be executed at
// runtime. Illegal dispatch situations and the corresponding exceptions are already handled
// by the reachability logic.
transitionReachableVirtualMethods(current, seen);
Collections.addAll(interfaces, current.interfaces.values);
current = getProgramClassOrNull(current.superType);
} while (current != null && !instantiatedTypes.contains(current));
// The set now contains all virtual methods on the type and its supertype that are reachable.
// In a second step, we now look at interfaces. We have to do this in this order due to JVM
// semantics for default methods. A default method is only reachable if it is not overridden in
// any superclass. Also, it is not defined which default method is chosen if multiple
// interfaces define the same default method. Hence, for every interface (direct or indirect),
// we have to look at the interface chain and mark default methods as reachable, not taking
// the shadowing of other interface chains into account.
// See https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3
for (DexType iface : interfaces) {
DexClass clazz = appView.definitionFor(iface);
if (clazz == null) {
reportMissingClass(iface);
// TODO(herhut): In essence, our subtyping chain is broken here. Handle that case better.
break;
}
transitionDefaultMethodsForInstantiatedClass(iface, seen);
}
// When tracing the main-dex content, library roots must be specified, thus there are no
// implicit edges from library methods.
if (getMode().isTracingMainDex()) {
return;
}
// When a type becomes live, all library methods on that type become live too.
// This is done by searching the library supertypes and then resolving each method defined by
// such a library type from the point of the instantiated type. If the resolved targets are in
// the program, i.e., the instantiated type has a method overidding a library method, then the
// program method is live.
Deque<DexClass> librarySearchItems = new ArrayDeque<>();
librarySearchItems.add(instantiatedClass);
while (!librarySearchItems.isEmpty()) {
DexClass clazz = librarySearchItems.pop();
if (clazz.isNotProgramClass()) {
markLibraryAndClasspathMethodOverridesAsLive(clazz, instantiatedClass);
}
if (clazz.superType != null) {
DexClass superClass = appView.definitionFor(clazz.superType);
if (superClass != null) {
librarySearchItems.add(superClass);
}
}
for (DexType iface : clazz.interfaces.values) {
DexClass ifaceClass = appView.definitionFor(iface);
if (ifaceClass != null) {
librarySearchItems.add(ifaceClass);
}
}
}
}
private void markLibraryAndClasspathMethodOverridesAsLive(
DexClass libraryClass, DexProgramClass instantiatedClass) {
assert libraryClass.isNotProgramClass();
assert !instantiatedClass.isInterface() || instantiatedClass.accessFlags.isAnnotation();
for (DexEncodedMethod method : libraryClass.virtualMethods()) {
// Note: it may be worthwhile to add a resolution cache here. If so, it must till ensure
// that all library override edges are reported to the kept-graph consumer.
ResolutionResult firstResolution =
appView.appInfo().resolveMethod(instantiatedClass, method.method);
markResolutionAsLive(libraryClass, firstResolution);
// Due to API conversion, some overrides can be hidden since they will be rewritten. See
// class comment of DesugaredLibraryAPIConverter and vivifiedType logic.
// In the first enqueuer phase, the signature has not been desugared, so firstResolution
// maintains the library override. In the second enqueuer phase, the signature has been
// desugared, and the second resolution maintains the the library override.
if (appView.rewritePrefix.hasRewrittenTypeInSignature(method.method.proto)) {
DexMethod methodToResolve =
DesugaredLibraryAPIConverter.methodWithVivifiedTypeInSignature(
method.method, method.method.holder, appView);
assert methodToResolve != method.method;
ResolutionResult secondResolution =
appView.appInfo().resolveMethod(instantiatedClass, methodToResolve);
markResolutionAsLive(libraryClass, secondResolution);
}
}
}
private void markResolutionAsLive(DexClass libraryClass, ResolutionResult resolution) {
if (resolution.isValidVirtualTarget(options)) {
resolution.forEachTarget(
target -> {
if (!target.isAbstract()) {
DexClass targetHolder = appView.definitionFor(target.method.holder);
if (targetHolder != null && targetHolder.isProgramClass()) {
DexProgramClass programClass = targetHolder.asProgramClass();
if (shouldMarkLibraryMethodOverrideAsReachable(programClass, target)) {
target.setLibraryMethodOverride();
markVirtualMethodAsLive(
programClass,
target,
KeepReason.isLibraryMethod(programClass, libraryClass.type));
}
}
}
});
}
}
private void transitionDefaultMethodsForInstantiatedClass(
DexType iface, ScopedDexMethodSet seen) {
DexProgramClass clazz = getProgramClassOrNull(iface);
if (clazz == null) {
return;
}
assert clazz.accessFlags.isInterface();
transitionReachableVirtualMethods(clazz, seen.newNestedScope());
for (DexType subInterface : clazz.interfaces.values) {
transitionDefaultMethodsForInstantiatedClass(subInterface, seen);
}
}
private void transitionNonAbstractMethodsToLiveAndShadow(
DexProgramClass clazz, ReachableVirtualMethodsSet reachable, ScopedDexMethodSet seen) {
for (DexEncodedMethod encodedMethod : reachable.getMethods()) {
if (seen.addMethod(encodedMethod)) {
// Abstract methods do shadow implementations but they cannot be live, as they have no code.
if (!encodedMethod.accessFlags.isAbstract()) {
markVirtualMethodAsLive(
clazz,
encodedMethod,
graphReporter.reportReachableMethodAsLive(
encodedMethod, reachable.getReasons(encodedMethod)));
}
}
}
}
/**
* Marks all fields live that can be reached by a read assuming that the given type or one of its
* subtypes is instantiated.
*/
private void transitionFieldsForInstantiatedClass(DexProgramClass clazz) {
do {
SetWithReason<DexEncodedField> reachableFields = reachableInstanceFields.get(clazz);
if (reachableFields != null) {
for (DexEncodedField field : reachableFields.getItems()) {
// TODO(b/120959039): Should the reason this field is reachable come from the set?
markInstanceFieldAsLive(field, KeepReason.reachableFromLiveType(clazz.type));
}
}
clazz = getProgramClassOrNull(clazz.superType);
} while (clazz != null && !instantiatedTypes.contains(clazz));
}
private void transitionDependentItemsForInstantiatedClass(DexClass clazz) {
DexClass current = clazz;
do {
// Handle keep rules that are dependent on the class being instantiated.
rootSet.forEachDependentNonStaticMember(current, appView, this::enqueueDependentItem);
// Visit the super type.
current = current.superType != null ? appView.definitionFor(current.superType) : null;
} while (current != null
&& current.isProgramClass()
&& !instantiatedTypes.contains(current.asProgramClass()));
}
private void transitionUnusedInterfaceToLive(DexProgramClass clazz) {
if (clazz.isInterface()) {
Set<DexProgramClass> implementedBy = unusedInterfaceTypes.remove(clazz);
if (implementedBy != null) {
for (DexProgramClass implementer : implementedBy) {
markTypeAsLive(clazz, graphReporter.reportClassReferencedFrom(clazz, implementer));
}
}
} else {
assert !unusedInterfaceTypes.containsKey(clazz);
}
}
private void markFieldAsTargeted(DexField field, DexEncodedMethod context) {
markTypeAsLive(field.type, clazz -> graphReporter.reportClassReferencedFrom(clazz, context));
markTypeAsLive(field.holder, clazz -> graphReporter.reportClassReferencedFrom(clazz, context));
}
private void markStaticFieldAsLive(DexEncodedField encodedField, KeepReason reason) {
// Mark the type live here, so that the class exists at runtime.
DexField field = encodedField.field;
markTypeAsLive(
field.holder, clazz -> graphReporter.reportClassReferencedFrom(clazz, encodedField));
markTypeAsLive(
field.type, clazz -> graphReporter.reportClassReferencedFrom(clazz, encodedField));
DexProgramClass clazz = getProgramClassOrNull(field.holder);
if (clazz == null) {
return;
}
registerClassInitializer(clazz, reason);
// This field might be an instance field reachable from a static context, e.g. a getStatic that
// resolves to an instance field. We have to keep the instance field nonetheless, as otherwise
// we might unmask a shadowed static field and hence change semantics.
if (encodedField.accessFlags.isStatic()) {
if (Log.ENABLED) {
Log.verbose(getClass(), "Adding static field `%s` to live set.", encodedField.field);
}
} else {
if (Log.ENABLED) {
Log.verbose(getClass(), "Adding instance field `%s` to live set (static context).",
encodedField.field);
}
}
processAnnotations(encodedField, encodedField.annotations.annotations);
liveFields.add(encodedField, reason);
// Add all dependent members to the workqueue.
enqueueRootItems(rootSet.getDependentItems(encodedField));
// Notify analyses.
analyses.forEach(analysis -> analysis.processNewlyLiveField(encodedField));
}
private void markInstanceFieldAsLive(DexEncodedField field, KeepReason reason) {
assert field != null;
assert field.isProgramField(appView);
markTypeAsLive(field.field.holder, reason);
markTypeAsLive(field.field.type, reason);
if (Log.ENABLED) {
Log.verbose(getClass(), "Adding instance field `%s` to live set.", field.field);
}
processAnnotations(field, field.annotations.annotations);
liveFields.add(field, reason);
// Add all dependent members to the workqueue.
enqueueRootItems(rootSet.getDependentItems(field));
// Notify analyses.
analyses.forEach(analysis -> analysis.processNewlyLiveField(field));
}
private void markInstantiated(
DexProgramClass clazz, DexEncodedMethod context, KeepReason reason) {
if (Log.ENABLED) {
Log.verbose(getClass(), "Register new instantiation of `%s`.", clazz);
}
workList.enqueueMarkInstantiatedAction(clazz, context, reason);
}
private void markLambdaInstantiated(DexType itf, DexEncodedMethod method) {
DexClass clazz = appView.definitionFor(itf);
if (clazz == null) {
StringDiagnostic message =
new StringDiagnostic(
"Lambda expression implements missing interface `" + itf.toSourceString() + "`",
appInfo.originFor(method.method.holder));
options.reporter.warning(message);
return;
}
if (!clazz.isInterface()) {
StringDiagnostic message =
new StringDiagnostic(
"Lambda expression expected to implement an interface, but found "
+ "`"
+ itf.toSourceString()
+ "`",
appInfo.originFor(method.method.holder));
options.reporter.warning(message);
return;
}
if (clazz.isProgramClass()) {
KeepReason reason = KeepReason.instantiatedIn(method);
if (instantiatedInterfaceTypes.add(clazz.asProgramClass(), reason)) {
populateInstantiatedTypesCache(clazz.asProgramClass());
}
}
}
private void markDirectStaticOrConstructorMethodAsLive(
DexProgramClass clazz, DexEncodedMethod encodedMethod, KeepReason reason) {
assert encodedMethod.method.holder == clazz.type;
if (!enqueueMarkMethodLiveAction(clazz, encodedMethod, reason)) {
// Already marked live.
return;
}
// Should already have marked the type live previously.
DexMethod method = encodedMethod.method;
assert encodedMethod.isClassInitializer() || verifyMethodIsTargeted(encodedMethod);
assert verifyTypeIsLive(clazz);
if (Log.ENABLED) {
Log.verbose(
getClass(), "Method `%s` has become live due to direct invoke", encodedMethod.method);
}
}
private void markVirtualMethodAsLive(
DexProgramClass clazz, DexEncodedMethod method, KeepReason reason) {
assert method != null;
// Only explicit keep rules or reflective use should make abstract methods live.
assert !method.accessFlags.isAbstract()
|| reason.isDueToKeepRule()
|| reason.isDueToReflectiveUse();
if (enqueueMarkMethodLiveAction(clazz, method, reason)) {
if (Log.ENABLED) {
Log.verbose(getClass(), "Adding virtual method `%s` to live set.", method.method);
}
}
}
public boolean isFieldLive(DexEncodedField field) {
return liveFields.contains(field);
}
public boolean isFieldRead(DexEncodedField field) {
FieldAccessInfoImpl info = fieldAccessInfoCollection.get(field.field);
return info != null && info.isRead();
}
public boolean isFieldWrittenOutsideDefaultConstructor(DexEncodedField field) {
FieldAccessInfoImpl info = fieldAccessInfoCollection.get(field.field);
if (info == null) {
return false;
}
DexClass clazz = appView.definitionFor(field.field.holder);
DexEncodedMethod defaultInitializer = clazz.getDefaultInitializer();
return defaultInitializer != null
? info.isWrittenOutside(defaultInitializer)
: info.isWritten();
}
private boolean isInstantiatedOrHasInstantiatedSubtype(DexProgramClass clazz) {
return directAndIndirectlyInstantiatedTypes.contains(clazz);
}
// Package protected due to entry point from worklist.
void markInstanceFieldAsReachable(DexEncodedField encodedField, KeepReason reason) {
DexField field = encodedField.field;
if (Log.ENABLED) {
Log.verbose(getClass(), "Marking instance field `%s` as reachable.", field);
}
markTypeAsLive(
field.holder, clazz -> graphReporter.reportClassReferencedFrom(clazz, encodedField));
markTypeAsLive(
field.type, clazz -> graphReporter.reportClassReferencedFrom(clazz, encodedField));
DexProgramClass clazz = getProgramClassOrNull(field.holder);
if (clazz == null) {
return;
}
// We might have a instance field access that is dispatched to a static field. In such case,
// we have to keep the static field, so that the dispatch fails at runtime in the same way that
// it did before. We have to keep the field even if the receiver has no live inhabitants, as
// field resolution happens before the receiver is inspected.
if (encodedField.accessFlags.isStatic()) {
markStaticFieldAsLive(encodedField, reason);
} else {
if (isInstantiatedOrHasInstantiatedSubtype(clazz)) {
markInstanceFieldAsLive(encodedField, reason);
} else {
// Add the field to the reachable set if the type later becomes instantiated.
reachableInstanceFields
.computeIfAbsent(clazz, ignore -> newSetWithoutReasonReporter())
.add(encodedField, reason);
}
}
}
// Package protected due to entry point from worklist.
void markVirtualMethodAsReachable(DexMethod method, boolean interfaceInvoke, KeepReason reason) {
markVirtualMethodAsReachable(method, interfaceInvoke, reason, (x, y) -> true);
}
private void markVirtualMethodAsReachable(
DexMethod method,
boolean interfaceInvoke,
KeepReason reason,
BiPredicate<DexProgramClass, DexEncodedMethod> possibleTargetsFilter) {
if (method.holder.isArrayType()) {
// This is an array type, so the actual class will be generated at runtime. We treat this
// like an invoke on a direct subtype of java.lang.Object that has no further subtypes.
// As it has no subtypes, it cannot affect liveness of the program we are processing.
// Ergo, we can ignore it. We need to make sure that the element type is available, though.
markTypeAsLive(method.holder, reason);
return;
}
// Note that all virtual methods derived from library methods are kept regardless of being
// reachable, so the following only needs to consider reachable targets in the program.
// TODO(b/70160030): Revise this to support tree shaking library methods on non-escaping types.
DexProgramClass holder = getProgramClassOrNull(method.holder);
if (holder == null) {
return;
}
// If the method has already been marked, just report the new reason for the resolved target.
MarkedResolutionTarget resolution = virtualTargetsMarkedAsReachable.get(method);
if (resolution != null) {
if (!resolution.isUnresolved()) {
graphReporter.registerMethod(resolution.method, reason);
}
return;
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Marking virtual method `%s` as reachable.", method);
}
// Otherwise, the resolution target is marked and cached, and all possible targets identified.
resolution = findAndMarkResolutionTarget(method, interfaceInvoke, reason);
virtualTargetsMarkedAsReachable.put(method, resolution);
if (resolution.isUnresolved()
|| !SingleResolutionResult.isValidVirtualTarget(options, resolution.method)) {
// There is no valid resolution, so any call will lead to a runtime exception.
return;
}
// TODO(b/70160030): If the resolution is on a library method, then the keep edge needs to go
// directly to the target method in the program. Thus this method will need to ensure that
// 'reason' is not already reported (eg, must be delayed / non-witness) and report that for
// each possible target edge below.
assert resolution.holder.isProgramClass();
assert interfaceInvoke == holder.isInterface();
Set<DexEncodedMethod> possibleTargets =
// TODO(b/140214802): Call on the resolution once proper resolution and lookup is resolved.
new SingleResolutionResult(resolution.method)
.lookupVirtualDispatchTargets(interfaceInvoke, appInfo);
if (possibleTargets == null || possibleTargets.isEmpty()) {
return;
}
for (DexEncodedMethod encodedPossibleTarget : possibleTargets) {
if (encodedPossibleTarget.isAbstract()) {
continue;
}
markPossibleTargetsAsReachable(resolution, possibleTargetsFilter, encodedPossibleTarget);
}
}
private void markPossibleTargetsAsReachable(
MarkedResolutionTarget reason,
BiPredicate<DexProgramClass, DexEncodedMethod> possibleTargetsFilter,
DexEncodedMethod encodedPossibleTarget) {
assert encodedPossibleTarget.isVirtualMethod() || options.canUseNestBasedAccess();
assert !encodedPossibleTarget.isAbstract();
DexMethod possibleTarget = encodedPossibleTarget.method;
DexProgramClass clazz = getProgramClassOrNull(possibleTarget.holder);
if (clazz == null) {
return;
}
if (!possibleTargetsFilter.test(clazz, encodedPossibleTarget)) {
return;
}
ReachableVirtualMethodsSet reachable =
reachableVirtualMethods.computeIfAbsent(clazz, ignore -> new ReachableVirtualMethodsSet());
if (!reachable.add(encodedPossibleTarget, reason)) {
return;
}
// If the holder type is instantiated, the method is live. Otherwise check whether we find
// a subtype that does not shadow this methods but is instantiated.
// Note that library classes are always considered instantiated, as we do not know where
// they are instantiated.
if (!isInstantiatedOrHasInstantiatedSubtype(clazz)) {
return;
}
if (instantiatedTypes.contains(clazz)
|| instantiatedInterfaceTypes.contains(clazz)
|| pinnedItems.contains(clazz.type)) {
markVirtualMethodAsLive(
clazz,
encodedPossibleTarget,
graphReporter.reportReachableMethodAsLive(encodedPossibleTarget, reason));
} else {
Deque<DexType> worklist =
new ArrayDeque<>(appInfo.allImmediateSubtypes(possibleTarget.holder));
while (!worklist.isEmpty()) {
DexType current = worklist.pollFirst();
DexProgramClass currentClass = getProgramClassOrNull(current);
// If this class overrides the virtual, abort the search. Note that, according to
// the JVM spec, private methods cannot override a virtual method.
if (currentClass == null || currentClass.lookupVirtualMethod(possibleTarget) != null) {
continue;
}
// TODO(zerny): Why does not not confer with lambdas and pinned too?
if (instantiatedTypes.contains(currentClass)) {
markVirtualMethodAsLive(
clazz,
encodedPossibleTarget,
graphReporter.reportReachableMethodAsLive(encodedPossibleTarget, reason));
break;
}
appInfo.allImmediateSubtypes(current).forEach(worklist::addLast);
}
}
}
private MarkedResolutionTarget findAndMarkResolutionTarget(
DexMethod method, boolean interfaceInvoke, KeepReason reason) {
ResolutionResult resolutionResult =
appInfo.resolveMethod(method.holder, method, interfaceInvoke);
if (!resolutionResult.hasSingleTarget()) {
// If the resolution fails, mark each dependency causing a failure.
markFailedResolutionTargets(resolutionResult, reason);
return MarkedResolutionTarget.unresolved();
}
DexEncodedMethod resolutionTarget = resolutionResult.getSingleTarget();
DexClass resolutionTargetClass = appInfo.definitionFor(resolutionTarget.method.holder);
if (resolutionTargetClass == null) {
reportMissingClass(resolutionTarget.method.holder);
return MarkedResolutionTarget.unresolved();
}
if (!options.enableTreeShakingOfLibraryMethodOverrides
&& resolutionTargetClass.isNotProgramClass()) {
return MarkedResolutionTarget.unresolved();
}
// We have to mark this as targeted, as even if this specific instance never becomes live, we
// need at least an abstract version of it so that we have a target for the corresponding
// invoke. This also ensures preserving the errors detailed below.
if (resolutionTargetClass.isProgramClass()) {
markMethodAsTargeted(resolutionTargetClass.asProgramClass(), resolutionTarget, reason);
}
return new MarkedResolutionTarget(resolutionTargetClass, resolutionTarget);
}
private void markFailedResolutionTargets(ResolutionResult failedResolution, KeepReason reason) {
failedResolution.forEachTarget(
method -> {
DexProgramClass clazz = getProgramClassOrNull(method.method.holder);
if (clazz != null) {
targetedMethodsThatMustRemainNonAbstract.add(method);
markMethodAsTargeted(clazz, method, reason);
}
});
}
private DexMethod generatedEnumValuesMethod(DexClass enumClass) {
DexType arrayOfEnumClass =
appView
.dexItemFactory()
.createType(
appView.dexItemFactory().createString("[" + enumClass.type.toDescriptorString()));
DexProto proto = appView.dexItemFactory().createProto(arrayOfEnumClass);
return appView
.dexItemFactory()
.createMethod(enumClass.type, proto, appView.dexItemFactory().createString("values"));
}
private void markEnumValuesAsReachable(DexProgramClass clazz, KeepReason reason) {
DexEncodedMethod valuesMethod = clazz.lookupMethod(generatedEnumValuesMethod(clazz));
if (valuesMethod != null) {
// TODO(sgjesse): Does this have to be enqueued as a root item? Right now it is done as the
// marking for not renaming it is in the root set.
workList.enqueueMarkMethodKeptAction(clazz, valuesMethod, reason);
pinnedItems.add(valuesMethod.toReference());
rootSet.shouldNotBeMinified(valuesMethod.toReference());
}
}
// Package protected due to entry point from worklist.
void markSuperMethodAsReachable(DexMethod method, DexEncodedMethod from) {
// We have to mark the immediate target of the descriptor as targeted, as otherwise
// the invoke super will fail in the resolution step with a NSM error.
// See <a
// href="https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html#jvms-6.5.invokespecial">
// the JVM spec for invoke-special.
DexEncodedMethod resolutionTarget = appInfo.resolveMethod(method.holder, method)
.asResultOfResolve();
if (resolutionTarget == null) {
brokenSuperInvokes.add(method);
reportMissingMethod(method);
return;
}
if (resolutionTarget.accessFlags.isPrivate() || resolutionTarget.accessFlags.isStatic()) {
brokenSuperInvokes.add(resolutionTarget.method);
}
DexProgramClass resolutionTargetClass = getProgramClassOrNull(resolutionTarget.method.holder);
if (resolutionTargetClass != null) {
markMethodAsTargeted(
resolutionTargetClass, resolutionTarget, KeepReason.targetedBySuperFrom(from));
}
// Now we need to compute the actual target in the context.
DexEncodedMethod target = appInfo.lookupSuperTarget(method, from.method.holder);
if (target == null) {
// The actual implementation in the super class is missing.
reportMissingMethod(method);
return;
}
DexProgramClass clazz = getProgramClassOrNull(target.method.holder);
if (clazz == null) {
return;
}
if (target.accessFlags.isPrivate()) {
brokenSuperInvokes.add(resolutionTarget.method);
}
if (Log.ENABLED) {
Log.verbose(getClass(), "Adding super constraint from `%s` to `%s`", from.method,
target.method);
}
if (superInvokeDependencies.computeIfAbsent(
from, ignore -> Sets.newIdentityHashSet()).add(target)) {
if (liveMethods.contains(from)) {
markMethodAsTargeted(clazz, target, KeepReason.invokedViaSuperFrom(from));
if (!target.accessFlags.isAbstract()) {
markVirtualMethodAsLive(clazz, target, KeepReason.invokedViaSuperFrom(from));
}
}
}
}
// Returns the set of live types.
public Set<DexProgramClass> traceMainDex(
RootSet rootSet, ExecutorService executorService, Timing timing) throws ExecutionException {
assert analyses.isEmpty();
assert mode.isTracingMainDex();
this.rootSet = rootSet;
// Translate the result of root-set computation into enqueuer actions.
enqueueRootItems(rootSet.noShrinking);
trace(executorService, timing);
options.reporter.failIfPendingErrors();
return liveTypes.getItems();
}
public AppInfoWithLiveness traceApplication(
RootSet rootSet,
ProguardClassFilter dontWarnPatterns,
ExecutorService executorService,
Timing timing)
throws ExecutionException {
this.rootSet = rootSet;
this.dontWarnPatterns = dontWarnPatterns;
// Translate the result of root-set computation into enqueuer actions.
enqueueRootItems(rootSet.noShrinking);
trace(executorService, timing);
options.reporter.failIfPendingErrors();
analyses.forEach(EnqueuerAnalysis::done);
assert verifyKeptGraph();
return createAppInfo(appInfo);
}
public boolean verifyKeptGraph() {
if (appView.options().testing.verifyKeptGraphInfo) {
for (DexProgramClass liveType : liveTypes.getItems()) {
assert graphReporter.verifyRootedPath(liveType);
}
}
return true;
}
private AppInfoWithLiveness createAppInfo(AppInfoWithSubtyping appInfo) {
ImmutableSortedSet.Builder<DexType> builder =
ImmutableSortedSet.orderedBy(PresortedComparable::slowCompareTo);
liveAnnotations.items.forEach(annotation -> builder.add(annotation.annotation.type));
// Remove the temporary mappings that have been inserted into the field access info collection
// and verify that the mapping is then one-to-one.
fieldAccessInfoCollection.removeIf(
(field, info) -> field != info.getField() || info == MISSING_FIELD_ACCESS_INFO);
assert fieldAccessInfoCollection.verifyMappingIsOneToOne();
AppInfoWithLiveness appInfoWithLiveness =
new AppInfoWithLiveness(
appInfo,
SetUtils.mapIdentityHashSet(liveTypes.getItems(), DexProgramClass::getType),
SetUtils.mapIdentityHashSet(
liveAnnotations.getItems(), DexAnnotation::getAnnotationType),
Collections.unmodifiableSet(instantiatedAppServices),
SetUtils.mapIdentityHashSet(instantiatedTypes.getItems(), DexProgramClass::getType),
Enqueuer.toSortedDescriptorSet(targetedMethods.getItems()),
SetUtils.mapIdentityHashSet(
targetedMethodsThatMustRemainNonAbstract, DexEncodedMethod::getKey),
ImmutableSortedSet.copyOf(DexMethod::slowCompareTo, bootstrapMethods),
ImmutableSortedSet.copyOf(DexMethod::slowCompareTo, methodsTargetedByInvokeDynamic),
ImmutableSortedSet.copyOf(
DexMethod::slowCompareTo, virtualMethodsTargetedByInvokeDirect),
toSortedDescriptorSet(liveMethods.getItems()),
// Filter out library fields and pinned fields, because these are read by default.
fieldAccessInfoCollection,
// TODO(b/132593519): Do we require these sets to be sorted for determinism?
toImmutableSortedMap(virtualInvokes, PresortedComparable::slowCompare),
toImmutableSortedMap(interfaceInvokes, PresortedComparable::slowCompare),
toImmutableSortedMap(superInvokes, PresortedComparable::slowCompare),
toImmutableSortedMap(directInvokes, PresortedComparable::slowCompare),
toImmutableSortedMap(staticInvokes, PresortedComparable::slowCompare),
callSites,
ImmutableSortedSet.copyOf(DexMethod::slowCompareTo, brokenSuperInvokes),
pinnedItems,
rootSet.mayHaveSideEffects,
rootSet.noSideEffects,
rootSet.assumedValues,
rootSet.alwaysInline,
rootSet.forceInline,
rootSet.neverInline,
rootSet.whyAreYouNotInlining,
rootSet.keepConstantArguments,
rootSet.keepUnusedArguments,
rootSet.neverClassInline,
rootSet.neverMerge,
rootSet.neverPropagateValue,
joinIdentifierNameStrings(rootSet.identifierNameStrings, identifierNameStrings),
Collections.emptySet(),
Collections.emptyMap(),
Collections.emptyMap(),
SetUtils.mapIdentityHashSet(
instantiatedInterfaceTypes.getItems(), DexProgramClass::getType),
constClassReferences);
appInfo.markObsolete();
return appInfoWithLiveness;
}
private static <T extends PresortedComparable<T>> SortedSet<T> toSortedDescriptorSet(
Set<? extends KeyedDexItem<T>> set) {
ImmutableSortedSet.Builder<T> builder =
new ImmutableSortedSet.Builder<>(PresortedComparable::slowCompareTo);
for (KeyedDexItem<T> item : set) {
builder.add(item.getKey());
}
return builder.build();
}
private static Object2BooleanMap<DexReference> joinIdentifierNameStrings(
Set<DexReference> explicit, Set<DexReference> implicit) {
Object2BooleanMap<DexReference> result = new Object2BooleanArrayMap<>();
for (DexReference e : explicit) {
result.putIfAbsent(e, true);
}
for (DexReference i : implicit) {
result.putIfAbsent(i, false);
}
return result;
}
private void trace(ExecutorService executorService, Timing timing) throws ExecutionException {
timing.begin("Grow the tree.");
try {
while (true) {
long numOfLiveItems = (long) liveTypes.items.size();
numOfLiveItems += (long) liveMethods.items.size();
numOfLiveItems += (long) liveFields.items.size();
while (!workList.isEmpty()) {
Action action = workList.poll();
action.run(this);
}
// Continue fix-point processing if -if rules are enabled by items that newly became live.
long numOfLiveItemsAfterProcessing = (long) liveTypes.items.size();
numOfLiveItemsAfterProcessing += (long) liveMethods.items.size();
numOfLiveItemsAfterProcessing += (long) liveFields.items.size();
if (numOfLiveItemsAfterProcessing > numOfLiveItems) {
// Build the mapping of active if rules. We use a single collection of if-rules to allow
// removing if rules that have a constant sequent keep rule when they materialize.
if (activeIfRules == null) {
activeIfRules = new HashMap<>();
IfRuleClassPartEquivalence equivalence = new IfRuleClassPartEquivalence();
for (ProguardIfRule ifRule : rootSet.ifRules) {
Wrapper<ProguardIfRule> wrap = equivalence.wrap(ifRule);
activeIfRules.computeIfAbsent(wrap, ignore -> new LinkedHashSet<>()).add(ifRule);
}
}
RootSetBuilder consequentSetBuilder = new RootSetBuilder(appView, null);
IfRuleEvaluator ifRuleEvaluator =
new IfRuleEvaluator(
appView,
executorService,
activeIfRules,
liveFields.getItems(),
liveMethods.getItems(),
liveTypes.getItems(),
mode,
consequentSetBuilder,
targetedMethods.getItems());
ConsequentRootSet consequentRootSet = ifRuleEvaluator.run();
// TODO(b/132600955): This modifies the root set. Should the consequent be persistent?
rootSet.addConsequentRootSet(consequentRootSet);
enqueueRootItems(consequentRootSet.noShrinking);
// TODO(b/132828740): Seems incorrect that the precondition is not always met here.
consequentRootSet.dependentNoShrinking.forEach(
(precondition, dependentItems) -> enqueueRootItems(dependentItems));
// Check for compatibility rules indicating that the holder must be implicitly kept.
if (forceProguardCompatibility) {
consequentRootSet.dependentKeepClassCompatRule.forEach(
(precondition, compatRules) -> {
assert precondition.isDexType();
DexClass preconditionHolder = appView.definitionFor(precondition.asDexType());
compatEnqueueHolderIfDependentNonStaticMember(preconditionHolder, compatRules);
});
}
if (!workList.isEmpty()) {
continue;
}
}
// Continue fix-point processing while there are additional work items to ensure items that
// are passed to Java reflections are traced.
if (!pendingReflectiveUses.isEmpty()) {
pendingReflectiveUses.forEach(this::handleReflectiveBehavior);
pendingReflectiveUses.clear();
}
if (!workList.isEmpty()) {
continue;
}
// Notify each analysis that a fixpoint has been reached, and give each analysis an
// opportunity to add items to the worklist.
analyses.forEach(analysis -> analysis.notifyFixpoint(this, workList));
if (!workList.isEmpty()) {
continue;
}
// Reached the fixpoint.
break;
}
if (Log.ENABLED) {
Set<DexEncodedMethod> allLive = Sets.newIdentityHashSet();
for (ReachableVirtualMethodsSet reachable : reachableVirtualMethods.values()) {
allLive.addAll(reachable.getMethods());
}
Set<DexEncodedMethod> reachableNotLive = Sets.difference(allLive, liveMethods.getItems());
Log.debug(getClass(), "%s methods are reachable but not live", reachableNotLive.size());
Log.info(getClass(), "Only reachable: %s", reachableNotLive);
Set<DexProgramClass> liveButNotInstantiated =
Sets.difference(liveTypes.getItems(), instantiatedTypes.getItems());
Log.debug(getClass(), "%s classes are live but not instantiated",
liveButNotInstantiated.size());
Log.info(getClass(), "Live but not instantiated: %s", liveButNotInstantiated);
SetView<DexEncodedMethod> targetedButNotLive = Sets
.difference(targetedMethods.getItems(), liveMethods.getItems());
Log.debug(getClass(), "%s methods are targeted but not live", targetedButNotLive.size());
Log.info(getClass(), "Targeted but not live: %s", targetedButNotLive);
}
} finally {
timing.end();
}
unpinLambdaMethods();
}
private void unpinLambdaMethods() {
for (DexMethod method : lambdaMethodsTargetedByInvokeDynamic) {
pinnedItems.remove(method);
rootSet.prune(method);
}
lambdaMethodsTargetedByInvokeDynamic.clear();
}
// Package protected due to entry point from worklist.
void markMethodAsKept(DexProgramClass holder, DexEncodedMethod target, KeepReason reason) {
DexMethod method = target.method;
if (target.isVirtualMethod()) {
// A virtual method. Mark it as reachable so that subclasses, if instantiated, keep
// their overrides. However, we don't mark it live, as a keep rule might not imply that
// the corresponding class is live.
if (!holder.isInterface()) {
workList.enqueueMarkReachableVirtualAction(method, reason);
} else {
workList.enqueueMarkReachableInterfaceAction(method, reason);
// Reachability for default methods is based on live subtypes in general. For keep rules,
// we need special handling as we essentially might have live subtypes that are outside of
// the current compilation unit. Keep either the default-method or its implementation
// method.
// TODO(b/120959039): Codify the kept-graph expectations for these cases in tests.
if (target.isNonAbstractVirtualMethod()) {
markVirtualMethodAsLive(holder, target, reason);
} else {
DexEncodedMethod implementation = target.getDefaultInterfaceMethodImplementation();
if (implementation != null) {
DexProgramClass companion = getProgramClassOrNull(implementation.method.holder);
markTypeAsLive(companion, graphReporter.reportCompanionClass(holder, companion));
markVirtualMethodAsLive(
companion,
implementation,
graphReporter.reportCompanionMethod(target, implementation));
}
}
}
} else {
markMethodAsTargeted(holder, target, reason);
markDirectStaticOrConstructorMethodAsLive(holder, target, reason);
}
}
// Package protected due to entry point from worklist.
void markFieldAsKept(DexProgramClass holder, DexEncodedField target, KeepReason reason) {
assert holder.type == target.field.holder;
if (target.accessFlags.isStatic()) {
markStaticFieldAsLive(target, reason);
} else {
markInstanceFieldAsReachable(target, reason);
}
}
private boolean shouldMarkLibraryMethodOverrideAsReachable(
DexProgramClass clazz, DexEncodedMethod method) {
assert method.isVirtualMethod();
if (appView.isClassEscapingIntoLibrary(clazz.type)) {
return true;
}
// If there is a subtype of `clazz` that escapes into the library and does not override `method`
// then we need to mark the method as being reachable.
Deque<DexType> worklist = new ArrayDeque<>(appView.appInfo().allImmediateSubtypes(clazz.type));
Set<DexType> visited = Sets.newIdentityHashSet();
visited.addAll(worklist);
while (!worklist.isEmpty()) {
DexClass current = appView.definitionFor(worklist.removeFirst());
if (current == null) {
continue;
}
assert visited.contains(current.type);
if (current.lookupVirtualMethod(method.method) != null) {
continue;
}
if (appView.isClassEscapingIntoLibrary(current.type)) {
return true;
}
for (DexType subtype : appView.appInfo().allImmediateSubtypes(current.type)) {
if (visited.add(subtype)) {
worklist.add(subtype);
}
}
}
return false;
}
// Package protected due to entry point from worklist.
void markMethodAsLive(DexEncodedMethod method, KeepReason reason) {
assert liveMethods.contains(method);
DexProgramClass clazz = getProgramClassOrNull(method.method.holder);
if (clazz == null) {
return;
}
Set<DexEncodedMethod> superCallTargets = superInvokeDependencies.get(method);
if (superCallTargets != null) {
for (DexEncodedMethod superCallTarget : superCallTargets) {
if (Log.ENABLED) {
Log.verbose(getClass(), "Found super invoke constraint on `%s`.", superCallTarget.method);
}
DexProgramClass targetClass = getProgramClassOrNull(superCallTarget.method.holder);
assert targetClass != null;
if (targetClass != null) {
markMethodAsTargeted(
targetClass, superCallTarget, KeepReason.invokedViaSuperFrom(method));
markVirtualMethodAsLive(
targetClass, superCallTarget, KeepReason.invokedViaSuperFrom(method));
}
}
}
markParameterAndReturnTypesAsLive(method);
processAnnotations(method, method.annotations.annotations);
method.parameterAnnotationsList.forEachAnnotation(
annotation -> processAnnotation(method, annotation));
method.registerCodeReferences(useRegistryFactory.create(appView, clazz, method, this));
// Add all dependent members to the workqueue.
enqueueRootItems(rootSet.getDependentItems(method));
// Notify analyses.
analyses.forEach(analysis -> analysis.processNewlyLiveMethod(method));
}
private void markReferencedTypesAsLive(DexEncodedMethod method) {
markTypeAsLive(
method.method.holder, clazz -> graphReporter.reportClassReferencedFrom(clazz, method));
markParameterAndReturnTypesAsLive(method);
}
private void markParameterAndReturnTypesAsLive(DexEncodedMethod method) {
for (DexType parameterType : method.method.proto.parameters.values) {
markTypeAsLive(
parameterType, clazz -> graphReporter.reportClassReferencedFrom(clazz, method));
}
markTypeAsLive(
method.method.proto.returnType,
clazz -> graphReporter.reportClassReferencedFrom(clazz, method));
}
private void markClassAsInstantiatedWithReason(DexProgramClass clazz, KeepReason reason) {
workList.enqueueMarkInstantiatedAction(clazz, null, reason);
if (clazz.hasDefaultInitializer()) {
workList.enqueueMarkReachableDirectAction(clazz.getDefaultInitializer().method, reason);
}
}
private void markClassAsInstantiatedWithCompatRule(
DexProgramClass clazz, KeepReasonWitness witness) {
if (clazz.isInterface() && !clazz.accessFlags.isAnnotation()) {
markInterfaceAsInstantiated(clazz, witness);
return;
}
workList.enqueueMarkInstantiatedAction(clazz, null, witness);
if (clazz.hasDefaultInitializer()) {
DexEncodedMethod defaultInitializer = clazz.getDefaultInitializer();
workList.enqueueMarkReachableDirectAction(
defaultInitializer.method,
graphReporter.reportCompatKeepDefaultInitializer(clazz, defaultInitializer));
}
}
private void markMethodAsLiveWithCompatRule(DexProgramClass clazz, DexEncodedMethod method) {
enqueueMarkMethodLiveAction(clazz, method, graphReporter.reportCompatKeepMethod(clazz, method));
}
private void handleReflectiveBehavior(DexEncodedMethod method) {
DexType originHolder = method.method.holder;
Origin origin = appInfo.originFor(originHolder);
IRCode code = method.buildIR(appView, origin);
InstructionIterator iterator = code.instructionIterator();
while (iterator.hasNext()) {
Instruction instruction = iterator.next();
handleReflectiveBehavior(method, instruction);
}
}
private void handleReflectiveBehavior(DexEncodedMethod method, Instruction instruction) {
if (!instruction.isInvokeMethod()) {
return;
}
InvokeMethod invoke = instruction.asInvokeMethod();
DexMethod invokedMethod = invoke.getInvokedMethod();
DexItemFactory dexItemFactory = appView.dexItemFactory();
if (invokedMethod == dexItemFactory.classMethods.newInstance) {
handleJavaLangClassNewInstance(method, invoke);
return;
}
if (invokedMethod == dexItemFactory.constructorMethods.newInstance) {
handleJavaLangReflectConstructorNewInstance(method, invoke);
return;
}
if (invokedMethod == dexItemFactory.enumMethods.valueOf) {
handleJavaLangEnumValueOf(method, invoke);
return;
}
if (invokedMethod == dexItemFactory.proxyMethods.newProxyInstance) {
handleJavaLangReflectProxyNewProxyInstance(method, invoke);
return;
}
if (dexItemFactory.serviceLoaderMethods.isLoadMethod(invokedMethod)) {
handleServiceLoaderInvocation(method, invoke);
return;
}
if (!isReflectionMethod(dexItemFactory, invokedMethod)) {
return;
}
DexReference identifierItem = identifyIdentifier(invoke, appView);
if (identifierItem == null) {
return;
}
if (identifierItem.isDexType()) {
DexProgramClass clazz = getProgramClassOrNull(identifierItem.asDexType());
if (clazz == null) {
return;
}
if (!clazz.isInterface()) {
markInstantiated(clazz, null, KeepReason.reflectiveUseIn(method));
if (clazz.hasDefaultInitializer()) {
DexEncodedMethod initializer = clazz.getDefaultInitializer();
KeepReason reason = KeepReason.reflectiveUseIn(method);
markMethodAsTargeted(clazz, initializer, reason);
markDirectStaticOrConstructorMethodAsLive(clazz, initializer, reason);
}
}
} else if (identifierItem.isDexField()) {
DexField field = identifierItem.asDexField();
DexProgramClass clazz = getProgramClassOrNull(field.holder);
if (clazz == null) {
return;
}
DexEncodedField encodedField = appView.definitionFor(field);
if (encodedField == null) {
return;
}
// Normally, we generate a -keepclassmembers rule for the field, such that the field is only
// kept if it is a static field, or if the holder or one of its subtypes are instantiated.
// However, if the invoked method is a field updater, then we always need to keep instance
// fields since the creation of a field updater throws a NoSuchFieldException if the field
// is not present.
boolean keepClass =
!encodedField.accessFlags.isStatic()
&& dexItemFactory.atomicFieldUpdaterMethods.isFieldUpdater(invokedMethod);
if (keepClass) {
markInstantiated(clazz, null, KeepReason.reflectiveUseIn(method));
}
if (pinnedItems.add(encodedField.field)) {
markFieldAsKept(clazz, encodedField, KeepReason.reflectiveUseIn(method));
}
} else {
assert identifierItem.isDexMethod();
DexMethod targetedMethod = identifierItem.asDexMethod();
DexProgramClass clazz = getProgramClassOrNull(targetedMethod.holder);
if (clazz == null) {
return;
}
DexEncodedMethod encodedMethod = appView.definitionFor(targetedMethod);
if (encodedMethod == null) {
return;
}
KeepReason reason = KeepReason.reflectiveUseIn(method);
if (encodedMethod.accessFlags.isStatic() || encodedMethod.accessFlags.isConstructor()) {
markMethodAsTargeted(clazz, encodedMethod, reason);
markDirectStaticOrConstructorMethodAsLive(clazz, encodedMethod, reason);
} else {
markVirtualMethodAsLive(clazz, encodedMethod, reason);
}
}
}
/** Handles reflective uses of {@link Class#newInstance()}. */
private void handleJavaLangClassNewInstance(DexEncodedMethod method, InvokeMethod invoke) {
if (!invoke.isInvokeVirtual()) {
assert false;
return;
}
DexType instantiatedType =
ConstantValueUtils.getDexTypeRepresentedByValue(
invoke.asInvokeVirtual().getReceiver(), appView);
if (instantiatedType == null || !instantiatedType.isClassType()) {
// Give up, we can't tell which class is being instantiated, or the type is not a class type.
// The latter should not happen in practice.
return;
}
DexProgramClass clazz = getProgramClassOrNull(instantiatedType);
if (clazz == null) {
return;
}
DexEncodedMethod defaultInitializer = clazz.getDefaultInitializer();
if (defaultInitializer != null) {
KeepReason reason = KeepReason.reflectiveUseIn(method);
markClassAsInstantiatedWithReason(clazz, reason);
markMethodAsTargeted(clazz, defaultInitializer, reason);
markDirectStaticOrConstructorMethodAsLive(clazz, defaultInitializer, reason);
}
}
/** Handles reflective uses of {@link java.lang.reflect.Constructor#newInstance(Object...)}. */
private void handleJavaLangReflectConstructorNewInstance(
DexEncodedMethod method, InvokeMethod invoke) {
if (!invoke.isInvokeVirtual()) {
assert false;
return;
}
Value constructorValue = invoke.asInvokeVirtual().getReceiver().getAliasedValue();
if (constructorValue.isPhi() || !constructorValue.definition.isInvokeVirtual()) {
// Give up, we can't tell which class is being instantiated.
return;
}
InvokeVirtual constructorDefinition = constructorValue.definition.asInvokeVirtual();
if (constructorDefinition.getInvokedMethod()
!= appView.dexItemFactory().classMethods.getDeclaredConstructor) {
// Give up, we can't tell which constructor is being invoked.
return;
}
DexType instantiatedType =
ConstantValueUtils.getDexTypeRepresentedByValue(
constructorDefinition.getReceiver(), appView);
if (instantiatedType == null || !instantiatedType.isClassType()) {
// Give up, we can't tell which constructor is being invoked, or the type is not a class type.
// The latter should not happen in practice.
return;
}
DexProgramClass clazz = getProgramClassOrNull(instantiatedType);
if (clazz == null) {
return;
}
Value parametersValue = constructorDefinition.inValues().get(1);
if (parametersValue.isPhi() || !parametersValue.definition.isNewArrayEmpty()) {
// Give up, we can't tell which constructor is being invoked.
return;
}
Value parametersSizeValue = parametersValue.definition.asNewArrayEmpty().size();
if (parametersSizeValue.isPhi() || !parametersSizeValue.definition.isConstNumber()) {
// Give up, we can't tell which constructor is being invoked.
return;
}
DexEncodedMethod initializer = null;
int parametersSize = parametersSizeValue.definition.asConstNumber().getIntValue();
if (parametersSize == 0) {
initializer = clazz.getDefaultInitializer();
} else {
DexType[] parameterTypes = new DexType[parametersSize];
int missingIndices = parametersSize;
for (Instruction user : parametersValue.uniqueUsers()) {
if (user.isArrayPut()) {
ArrayPut arrayPutInstruction = user.asArrayPut();
if (arrayPutInstruction.array() != parametersValue) {
return;
}
Value indexValue = arrayPutInstruction.index();
if (indexValue.isPhi() || !indexValue.definition.isConstNumber()) {
return;
}
int index = indexValue.definition.asConstNumber().getIntValue();
if (index >= parametersSize) {
return;
}
DexType type =
ConstantValueUtils.getDexTypeRepresentedByValue(arrayPutInstruction.value(), appView);
if (type == null) {
return;
}
if (parameterTypes[index] == type) {
continue;
}
if (parameterTypes[index] != null) {
return;
}
parameterTypes[index] = type;
missingIndices--;
}
}
if (missingIndices == 0) {
initializer = clazz.getInitializer(parameterTypes);
}
}
if (initializer != null) {
KeepReason reason = KeepReason.reflectiveUseIn(method);
markClassAsInstantiatedWithReason(clazz, reason);
markMethodAsTargeted(clazz, initializer, reason);
markDirectStaticOrConstructorMethodAsLive(clazz, initializer, reason);
}
}
/**
* Handles reflective uses of {@link java.lang.reflect.Proxy#newProxyInstance(ClassLoader,
* Class[], InvocationHandler)}.
*/
private void handleJavaLangReflectProxyNewProxyInstance(
DexEncodedMethod method, InvokeMethod invoke) {
if (!invoke.isInvokeStatic()) {
assert false;
return;
}
Value interfacesValue = invoke.arguments().get(1);
if (interfacesValue.isPhi() || !interfacesValue.definition.isNewArrayEmpty()) {
// Give up, we can't tell which interfaces the proxy implements.
return;
}
for (Instruction user : interfacesValue.uniqueUsers()) {
if (!user.isArrayPut()) {
continue;
}
ArrayPut arrayPut = user.asArrayPut();
DexType type = ConstantValueUtils.getDexTypeRepresentedByValue(arrayPut.value(), appView);
if (type == null || !type.isClassType()) {
continue;
}
DexProgramClass clazz = getProgramClassOrNull(type);
if (clazz != null && clazz.isInterface()) {
// Add this interface to the set of pinned items to ensure that we do not merge the
// interface into its subtype and to ensure that the devirtualizer does not perform illegal
// rewritings of invoke-interface instructions into invoke-virtual instructions.
pinnedItems.add(clazz.type);
}
}
}
private void handleJavaLangEnumValueOf(DexEncodedMethod method, InvokeMethod invoke) {
// The use of java.lang.Enum.valueOf(java.lang.Class, java.lang.String) will indirectly
// access the values() method of the enum class passed as the first argument. The method
// SomeEnumClass.valueOf(java.lang.String) which is generated by javac for all enums will
// call this method.
if (invoke.inValues().get(0).isConstClass()) {
DexType type = invoke.inValues().get(0).definition.asConstClass().getValue();
DexProgramClass clazz = getProgramClassOrNull(type);
if (clazz != null && clazz.accessFlags.isEnum()) {
DexProgramClass holder = getProgramClassOrNull(method.method.holder);
markEnumValuesAsReachable(clazz, KeepReason.invokedFrom(holder, method));
}
}
}
private void handleServiceLoaderInvocation(DexEncodedMethod method, InvokeMethod invoke) {
if (invoke.inValues().size() == 0) {
// Should never happen.
return;
}
Value argument = invoke.inValues().get(0).getAliasedValue();
if (!argument.isPhi() && argument.definition.isConstClass()) {
DexType serviceType = argument.definition.asConstClass().getValue();
if (!appView.appServices().allServiceTypes().contains(serviceType)) {
// Should never happen.
if (Log.ENABLED) {
options.reporter.warning(
new StringDiagnostic(
"The type `"
+ serviceType.toSourceString()
+ "` is being passed to the method `"
+ invoke.getInvokedMethod().toSourceString()
+ "`, but was not found in `META-INF/services/`.",
appInfo.originFor(method.method.holder)));
}
return;
}
handleServiceInstantiation(serviceType, KeepReason.reflectiveUseIn(method));
} else {
KeepReason reason = KeepReason.reflectiveUseIn(method);
for (DexType serviceType : appView.appServices().allServiceTypes()) {
handleServiceInstantiation(serviceType, reason);
}
}
}
private void handleServiceInstantiation(DexType serviceType, KeepReason reason) {
instantiatedAppServices.add(serviceType);
List<DexType> serviceImplementationTypes =
appView.appServices().serviceImplementationsFor(serviceType);
for (DexType serviceImplementationType : serviceImplementationTypes) {
if (!serviceImplementationType.isClassType()) {
// Should never happen.
continue;
}
DexProgramClass serviceImplementationClass = getProgramClassOrNull(serviceImplementationType);
if (serviceImplementationClass != null && serviceImplementationClass.isProgramClass()) {
markClassAsInstantiatedWithReason(serviceImplementationClass, reason);
}
}
}
private static class SetWithReportedReason<T> {
private final Set<T> items = Sets.newIdentityHashSet();
boolean add(T item, KeepReasonWitness witness) {
assert witness != null;
return items.add(item);
}
boolean contains(T item) {
return items.contains(item);
}
Set<T> getItems() {
return Collections.unmodifiableSet(items);
}
}
private class LiveMethodsSet {
private final Set<DexEncodedMethod> items = Sets.newIdentityHashSet();
private final BiConsumer<DexEncodedMethod, KeepReason> register;
LiveMethodsSet(BiConsumer<DexEncodedMethod, KeepReason> register) {
this.register = register;
}
boolean add(DexProgramClass clazz, DexEncodedMethod method, KeepReason reason) {
register.accept(method, reason);
transitionUnusedInterfaceToLive(clazz);
return items.add(method);
}
boolean contains(DexEncodedMethod method) {
return items.contains(method);
}
Set<DexEncodedMethod> getItems() {
return Collections.unmodifiableSet(items);
}
}
private static class SetWithReason<T> {
private final Set<T> items = Sets.newIdentityHashSet();
private final BiConsumer<T, KeepReason> register;
public SetWithReason(BiConsumer<T, KeepReason> register) {
this.register = register;
}
boolean add(T item, KeepReason reason) {
register.accept(item, reason);
return items.add(item);
}
boolean contains(T item) {
return items.contains(item);
}
Set<T> getItems() {
return Collections.unmodifiableSet(items);
}
}
public static class MarkedResolutionTarget {
private static final MarkedResolutionTarget UNRESOLVED = new MarkedResolutionTarget(null, null);
final DexClass holder;
final DexEncodedMethod method;
public static MarkedResolutionTarget unresolved() {
return UNRESOLVED;
}
public MarkedResolutionTarget(DexClass holder, DexEncodedMethod method) {
assert (holder == null && method == null) || holder.type == method.method.holder;
this.holder = holder;
this.method = method;
}
public boolean isUnresolved() {
return this == unresolved();
}
@Override
public int hashCode() {
// The encoded method already encodes information of the holder.
return method.hashCode();
}
@Override
public boolean equals(Object obj) {
// The encoded method already encodes information of the holder.
return obj instanceof MarkedResolutionTarget
&& ((MarkedResolutionTarget) obj).method.equals(method);
}
}
private static class ReachableVirtualMethodsSet {
private final Map<DexEncodedMethod, Set<MarkedResolutionTarget>> methods =
Maps.newIdentityHashMap();
public Set<DexEncodedMethod> getMethods() {
return methods.keySet();
}
public Set<MarkedResolutionTarget> getReasons(DexEncodedMethod method) {
return methods.get(method);
}
public boolean add(DexEncodedMethod method, MarkedResolutionTarget reason) {
Set<MarkedResolutionTarget> reasons = getReasons(method);
if (reasons == null) {
reasons = new HashSet<>();
reasons.add(reason);
methods.put(method, reasons);
return true;
}
reasons.add(reason);
return false;
}
}
private static final class TargetWithContext<T extends Descriptor<?, T>> {
private final T target;
private final DexEncodedMethod context;
private TargetWithContext(T target, DexEncodedMethod context) {
this.target = target;
this.context = context;
}
public T getTarget() {
return target;
}
public DexEncodedMethod getContext() {
return context;
}
@Override
public int hashCode() {
return target.hashCode() * 31 + context.hashCode();
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof TargetWithContext)) {
return false;
}
TargetWithContext other = (TargetWithContext) obj;
return (this.target == other.target) && (this.context == other.context);
}
}
private class AnnotationReferenceMarker implements IndexedItemCollection {
private final DexItem annotationHolder;
private final DexItemFactory dexItemFactory;
private final KeepReason reason;
private AnnotationReferenceMarker(
DexItem annotationHolder, DexItemFactory dexItemFactory, KeepReason reason) {
this.annotationHolder = annotationHolder;
this.dexItemFactory = dexItemFactory;
this.reason = reason;
}
@Override
public boolean addClass(DexProgramClass dexProgramClass) {
return false;
}
@Override
public boolean addField(DexField field) {
DexClass holder = appView.definitionFor(field.holder);
if (holder == null) {
return false;
}
DexEncodedField target = holder.lookupStaticField(field);
if (target != null) {
// There is no dispatch on annotations, so only keep what is directly referenced.
if (target.field == field) {
if (!registerFieldRead(field, DexEncodedMethod.ANNOTATION_REFERENCE)) {
return false;
}
markStaticFieldAsLive(target, KeepReason.referencedInAnnotation(annotationHolder));
// When an annotation has a field of an enum type with a default value then Java VM
// will use the values() method on that enum class.
if (options.isGeneratingClassFiles()
&& annotationHolder == dexItemFactory.annotationDefault) {
DexProgramClass clazz = getProgramClassOrNull(field.type);
if (clazz != null && clazz.accessFlags.isEnum()) {
markEnumValuesAsReachable(clazz, KeepReason.referencedInAnnotation(annotationHolder));
}
}
}
} else {
target = holder.lookupInstanceField(field);
// There is no dispatch on annotations, so only keep what is directly referenced.
if (target != null && target.field != field) {
markInstanceFieldAsReachable(target, KeepReason.referencedInAnnotation(annotationHolder));
}
}
return false;
}
@Override
public boolean addMethod(DexMethod method) {
DexProgramClass holder = getProgramClassOrNull(method.holder);
if (holder == null) {
return false;
}
DexEncodedMethod target = holder.lookupDirectMethod(method);
if (target != null) {
// There is no dispatch on annotations, so only keep what is directly referenced.
if (target.method == method) {
markDirectStaticOrConstructorMethodAsLive(
holder, target, KeepReason.referencedInAnnotation(annotationHolder));
}
} else {
target = holder.lookupVirtualMethod(method);
// There is no dispatch on annotations, so only keep what is directly referenced.
if (target != null && target.method == method) {
markMethodAsTargeted(holder, target, KeepReason.referencedInAnnotation(annotationHolder));
}
}
return false;
}
@Override
public boolean addString(DexString string) {
return false;
}
@Override
public boolean addProto(DexProto proto) {
return false;
}
@Override
public boolean addCallSite(DexCallSite callSite) {
return false;
}
@Override
public boolean addMethodHandle(DexMethodHandle methodHandle) {
return false;
}
@Override
public boolean addType(DexType type) {
// Annotations can also contain the void type, which is not a class type, so filter it out
// here.
if (type != dexItemFactory.voidType) {
markTypeAsLive(type, reason);
}
return false;
}
}
}