blob: db4857681f054466de1dfbb178d8f23e90ceb5e3 [file] [log] [blame]
// Copyright (c) 2018, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8.ir.optimize;
import com.android.tools.r8.errors.Unreachable;
import com.android.tools.r8.graph.AppView;
import com.android.tools.r8.graph.DexClass;
import com.android.tools.r8.graph.DexEncodedField;
import com.android.tools.r8.graph.DexEncodedMethod;
import com.android.tools.r8.graph.DexField;
import com.android.tools.r8.graph.DexMethod;
import com.android.tools.r8.graph.DexReference;
import com.android.tools.r8.graph.DexType;
import com.android.tools.r8.graph.GraphLense;
import com.android.tools.r8.graph.ResolutionResult;
import com.android.tools.r8.ir.code.Invoke.Type;
import com.android.tools.r8.ir.optimize.Inliner.Constraint;
import com.android.tools.r8.ir.optimize.Inliner.ConstraintWithTarget;
import com.android.tools.r8.shaking.AppInfoWithLiveness;
// Computes the inlining constraint for a given instruction.
public class InliningConstraints {
private AppView<AppInfoWithLiveness> appView;
private boolean allowStaticInterfaceMethodCalls = true;
// Currently used only by the vertical class merger (in all other cases this is the identity).
//
// When merging a type A into its subtype B we need to inline A.<init>() into B.<init>().
// Therefore, we need to be sure that A.<init>() can in fact be inlined into B.<init>() *before*
// we merge the two classes. However, at this point, we may reject the method A.<init>() from
// being inlined into B.<init>() only because it is not declared in the same class as B (which
// it would be after merging A and B).
//
// To circumvent this problem, the vertical class merger creates a graph lense that maps the
// type A to B, to create a temporary view of what the world would look like after class merging.
private GraphLense graphLense;
public InliningConstraints(AppView<AppInfoWithLiveness> appView, GraphLense graphLense) {
assert graphLense.isContextFreeForMethods();
assert appView.graphLense() != graphLense || graphLense.isIdentityLense();
this.appView = appView;
this.graphLense = graphLense; // Note: Intentionally *not* appView.graphLense().
}
public void disallowStaticInterfaceMethodCalls() {
allowStaticInterfaceMethodCalls = false;
}
public ConstraintWithTarget forAlwaysMaterializingUser() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forArgument() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forArrayGet() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forArrayLength() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forArrayPut() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forBinop() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDexItemBasedConstString(
DexReference type, DexType invocationContext) {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forCheckCast(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forConstClass(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forConstInstruction() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDebugLocalRead() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDebugLocalsChange() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDebugPosition() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDup() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forDup2() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forInstanceGet(DexField field, DexType invocationContext) {
DexField lookup = graphLense.lookupField(field);
return forFieldInstruction(
lookup, appView.appInfo().lookupInstanceTarget(lookup.holder, lookup), invocationContext);
}
public ConstraintWithTarget forInstanceOf(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forInstancePut(DexField field, DexType invocationContext) {
DexField lookup = graphLense.lookupField(field);
return forFieldInstruction(
lookup, appView.appInfo().lookupInstanceTarget(lookup.holder, lookup), invocationContext);
}
public ConstraintWithTarget forInvoke(DexMethod method, Type type, DexType invocationContext) {
switch (type) {
case DIRECT:
return forInvokeDirect(method, invocationContext);
case INTERFACE:
return forInvokeInterface(method, invocationContext);
case STATIC:
return forInvokeStatic(method, invocationContext);
case SUPER:
return forInvokeSuper(method, invocationContext);
case VIRTUAL:
return forInvokeVirtual(method, invocationContext);
case CUSTOM:
return forInvokeCustom();
case POLYMORPHIC:
return forInvokePolymorphic(method, invocationContext);
default:
throw new Unreachable("Unexpected type: " + type);
}
}
public ConstraintWithTarget forInvokeCustom() {
// TODO(b/135965362): Test and support inlining invoke dynamic.
return ConstraintWithTarget.NEVER;
}
public ConstraintWithTarget forInvokeDirect(DexMethod method, DexType invocationContext) {
DexMethod lookup = graphLense.lookupMethod(method);
return forSingleTargetInvoke(
lookup, appView.appInfo().lookupDirectTarget(lookup), invocationContext);
}
public ConstraintWithTarget forInvokeInterface(DexMethod method, DexType invocationContext) {
DexMethod lookup = graphLense.lookupMethod(method);
return forVirtualInvoke(
lookup,
invocationContext,
true);
}
public ConstraintWithTarget forInvokeMultiNewArray(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forInvokeNewArray(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forInvokePolymorphic(DexMethod method, DexType invocationContext) {
return ConstraintWithTarget.NEVER;
}
public ConstraintWithTarget forInvokeStatic(DexMethod method, DexType invocationContext) {
DexMethod lookup = graphLense.lookupMethod(method);
return forSingleTargetInvoke(
lookup, appView.appInfo().lookupStaticTarget(lookup), invocationContext);
}
public ConstraintWithTarget forInvokeSuper(DexMethod method, DexType invocationContext) {
// The semantics of invoke super depend on the context.
return new ConstraintWithTarget(Constraint.SAMECLASS, invocationContext);
}
public ConstraintWithTarget forInvokeVirtual(DexMethod method, DexType invocationContext) {
DexMethod lookup = graphLense.lookupMethod(method);
return forVirtualInvoke(
lookup,
invocationContext,
false);
}
public ConstraintWithTarget forJumpInstruction() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forLoad() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forMonitor() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forMove() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forMoveException() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forNewArrayEmpty(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forNewArrayFilledData() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forNewInstance(DexType type, DexType invocationContext) {
return ConstraintWithTarget.classIsVisible(invocationContext, type, appView);
}
public ConstraintWithTarget forAssume() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forPop() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forReturn() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forStaticGet(DexField field, DexType invocationContext) {
DexField lookup = graphLense.lookupField(field);
return forFieldInstruction(
lookup, appView.appInfo().lookupStaticTarget(lookup.holder, lookup), invocationContext);
}
public ConstraintWithTarget forStaticPut(DexField field, DexType invocationContext) {
DexField lookup = graphLense.lookupField(field);
return forFieldInstruction(
lookup, appView.appInfo().lookupStaticTarget(lookup.holder, lookup), invocationContext);
}
public ConstraintWithTarget forStore() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forSwap() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forThrow() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forUnop() {
return ConstraintWithTarget.ALWAYS;
}
public ConstraintWithTarget forConstMethodHandle() {
return ConstraintWithTarget.NEVER;
}
public ConstraintWithTarget forConstMethodType() {
return ConstraintWithTarget.NEVER;
}
private ConstraintWithTarget forFieldInstruction(
DexField field, DexEncodedField target, DexType invocationContext) {
// Resolve the field if possible and decide whether the instruction can inlined.
DexType fieldHolder = graphLense.lookupType(field.holder);
DexClass fieldClass = appView.definitionFor(fieldHolder);
if (target != null && fieldClass != null) {
ConstraintWithTarget fieldConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, fieldHolder, target.accessFlags, appView);
// If the field has not been member-rebound, then we also need to make sure that the
// `invocationContext` has access to the definition of the field.
//
// See, for example, InlineNonReboundFieldTest (b/128604123).
if (field.holder != target.field.holder) {
DexType actualFieldHolder = graphLense.lookupType(target.field.holder);
fieldConstraintWithTarget =
ConstraintWithTarget.meet(
fieldConstraintWithTarget,
ConstraintWithTarget.deriveConstraint(
invocationContext, actualFieldHolder, target.accessFlags, appView),
appView);
}
ConstraintWithTarget classConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, fieldHolder, fieldClass.accessFlags, appView);
return ConstraintWithTarget.meet(
fieldConstraintWithTarget, classConstraintWithTarget, appView);
}
return ConstraintWithTarget.NEVER;
}
private ConstraintWithTarget forSingleTargetInvoke(
DexMethod method, DexEncodedMethod target, DexType invocationContext) {
if (method.holder.isArrayType()) {
return ConstraintWithTarget.ALWAYS;
}
if (target != null) {
DexType methodHolder = graphLense.lookupType(target.method.holder);
DexClass methodClass = appView.definitionFor(methodHolder);
if (methodClass != null) {
if (!allowStaticInterfaceMethodCalls && methodClass.isInterface() && target.hasCode()) {
// See b/120121170.
return ConstraintWithTarget.NEVER;
}
ConstraintWithTarget methodConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, methodHolder, target.accessFlags, appView);
// We also have to take the constraint of the enclosing class into account.
ConstraintWithTarget classConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, methodHolder, methodClass.accessFlags, appView);
return ConstraintWithTarget.meet(
methodConstraintWithTarget, classConstraintWithTarget, appView);
}
}
return ConstraintWithTarget.NEVER;
}
private ConstraintWithTarget forVirtualInvoke(
DexMethod method,
DexType invocationContext,
boolean isInterface) {
if (method.holder.isArrayType()) {
return ConstraintWithTarget.ALWAYS;
}
// Perform resolution and derive inlining constraints based on the accessibility of the
// resolution result.
ResolutionResult resolutionResult =
appView.appInfo().resolveMethod(method.holder, method, isInterface);
if (!resolutionResult.isVirtualTarget()) {
return ConstraintWithTarget.NEVER;
}
DexEncodedMethod resolutionTarget = resolutionResult.getSingleTarget();
if (resolutionTarget == null) {
// This will fail at runtime.
return ConstraintWithTarget.NEVER;
}
DexType methodHolder = graphLense.lookupType(resolutionTarget.method.holder);
DexClass methodClass = appView.definitionFor(methodHolder);
assert methodClass != null;
ConstraintWithTarget methodConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, methodHolder, resolutionTarget.accessFlags, appView);
// We also have to take the constraint of the enclosing class of the resolution result
// into account. We do not allow inlining this method if it is calling something that
// is inaccessible. Inlining in that case could move the code to another package making a
// call succeed that should not succeed. Conversely, if the resolution result is accessible,
// we have to make sure that inlining cannot make it inaccessible.
ConstraintWithTarget classConstraintWithTarget =
ConstraintWithTarget.deriveConstraint(
invocationContext, methodHolder, methodClass.accessFlags, appView);
return ConstraintWithTarget.meet(
methodConstraintWithTarget, classConstraintWithTarget, appView);
}
}