blob: 1c8ba994aabbe60a288677527f6eee86b5eba014 [file] [log] [blame]
// Copyright (c) 2016, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8;
import static com.android.tools.r8.R8Command.USAGE_MESSAGE;
import static com.android.tools.r8.utils.AssertionUtils.forTesting;
import static com.android.tools.r8.utils.ExceptionUtils.unwrapExecutionException;
import com.android.tools.r8.androidapi.ApiReferenceStubber;
import com.android.tools.r8.cf.code.CfInstruction;
import com.android.tools.r8.cf.code.CfPosition;
import com.android.tools.r8.desugar.desugaredlibrary.DesugaredLibraryKeepRuleGenerator;
import com.android.tools.r8.dex.ApplicationReader;
import com.android.tools.r8.dex.ApplicationWriter;
import com.android.tools.r8.dex.Marker;
import com.android.tools.r8.dex.Marker.Tool;
import com.android.tools.r8.errors.CheckDiscardDiagnostic;
import com.android.tools.r8.experimental.graphinfo.GraphConsumer;
import com.android.tools.r8.graph.AppInfoWithClassHierarchy;
import com.android.tools.r8.graph.AppServices;
import com.android.tools.r8.graph.AppView;
import com.android.tools.r8.graph.AppliedGraphLens;
import com.android.tools.r8.graph.CfCode;
import com.android.tools.r8.graph.Code;
import com.android.tools.r8.graph.DexApplication;
import com.android.tools.r8.graph.DexClass;
import com.android.tools.r8.graph.DexCode;
import com.android.tools.r8.graph.DexDebugEvent;
import com.android.tools.r8.graph.DexEncodedMethod;
import com.android.tools.r8.graph.DexMethod;
import com.android.tools.r8.graph.DexProgramClass;
import com.android.tools.r8.graph.DexReference;
import com.android.tools.r8.graph.DexType;
import com.android.tools.r8.graph.DirectMappedDexApplication;
import com.android.tools.r8.graph.GenericSignatureContextBuilder;
import com.android.tools.r8.graph.GenericSignatureCorrectnessHelper;
import com.android.tools.r8.graph.GraphLens;
import com.android.tools.r8.graph.ProgramDefinition;
import com.android.tools.r8.graph.PrunedItems;
import com.android.tools.r8.graph.SubtypingInfo;
import com.android.tools.r8.graph.analysis.ClassInitializerAssertionEnablingAnalysis;
import com.android.tools.r8.graph.analysis.InitializedClassesInInstanceMethodsAnalysis;
import com.android.tools.r8.graph.classmerging.VerticallyMergedClasses;
import com.android.tools.r8.horizontalclassmerging.HorizontalClassMerger;
import com.android.tools.r8.inspector.internal.InspectorImpl;
import com.android.tools.r8.ir.conversion.IRConverter;
import com.android.tools.r8.ir.desugar.BackportedMethodRewriter;
import com.android.tools.r8.ir.desugar.CfClassSynthesizerDesugaringCollection;
import com.android.tools.r8.ir.desugar.CfClassSynthesizerDesugaringEventConsumer;
import com.android.tools.r8.ir.desugar.desugaredlibrary.DesugaredLibraryAmender;
import com.android.tools.r8.ir.desugar.itf.InterfaceMethodRewriter;
import com.android.tools.r8.ir.desugar.records.RecordDesugaring;
import com.android.tools.r8.ir.desugar.records.RecordFieldValuesRewriter;
import com.android.tools.r8.ir.optimize.AssertionsRewriter;
import com.android.tools.r8.ir.optimize.Inliner;
import com.android.tools.r8.ir.optimize.NestReducer;
import com.android.tools.r8.ir.optimize.SwitchMapCollector;
import com.android.tools.r8.ir.optimize.enums.EnumUnboxingCfMethods;
import com.android.tools.r8.ir.optimize.info.OptimizationFeedbackSimple;
import com.android.tools.r8.ir.optimize.templates.CfUtilityMethodsForCodeOptimizations;
import com.android.tools.r8.jar.CfApplicationWriter;
import com.android.tools.r8.kotlin.KotlinMetadataRewriter;
import com.android.tools.r8.kotlin.KotlinMetadataUtils;
import com.android.tools.r8.naming.Minifier;
import com.android.tools.r8.naming.NamingLens;
import com.android.tools.r8.naming.PrefixRewritingNamingLens;
import com.android.tools.r8.naming.ProguardMapMinifier;
import com.android.tools.r8.naming.RecordRewritingNamingLens;
import com.android.tools.r8.naming.signature.GenericSignatureRewriter;
import com.android.tools.r8.optimize.ClassAndMemberPublicizer;
import com.android.tools.r8.optimize.MemberRebindingAnalysis;
import com.android.tools.r8.optimize.MemberRebindingIdentityLensFactory;
import com.android.tools.r8.optimize.VisibilityBridgeRemover;
import com.android.tools.r8.optimize.bridgehoisting.BridgeHoisting;
import com.android.tools.r8.optimize.proto.ProtoNormalizer;
import com.android.tools.r8.origin.CommandLineOrigin;
import com.android.tools.r8.repackaging.Repackaging;
import com.android.tools.r8.repackaging.RepackagingLens;
import com.android.tools.r8.shaking.AbstractMethodRemover;
import com.android.tools.r8.shaking.AnnotationRemover;
import com.android.tools.r8.shaking.AppInfoWithLiveness;
import com.android.tools.r8.shaking.ClassInitFieldSynthesizer;
import com.android.tools.r8.shaking.DefaultTreePrunerConfiguration;
import com.android.tools.r8.shaking.DiscardedChecker;
import com.android.tools.r8.shaking.Enqueuer;
import com.android.tools.r8.shaking.Enqueuer.Mode;
import com.android.tools.r8.shaking.EnqueuerFactory;
import com.android.tools.r8.shaking.EnqueuerResult;
import com.android.tools.r8.shaking.MainDexInfo;
import com.android.tools.r8.shaking.MainDexListBuilder;
import com.android.tools.r8.shaking.ProguardConfigurationRule;
import com.android.tools.r8.shaking.ProguardConfigurationUtils;
import com.android.tools.r8.shaking.RootSetUtils.MainDexRootSet;
import com.android.tools.r8.shaking.RootSetUtils.RootSet;
import com.android.tools.r8.shaking.RootSetUtils.RootSetBuilder;
import com.android.tools.r8.shaking.RuntimeTypeCheckInfo;
import com.android.tools.r8.shaking.TreePruner;
import com.android.tools.r8.shaking.TreePrunerConfiguration;
import com.android.tools.r8.shaking.VerticalClassMerger;
import com.android.tools.r8.shaking.VerticalClassMergerGraphLens;
import com.android.tools.r8.shaking.WhyAreYouKeepingConsumer;
import com.android.tools.r8.synthesis.SyntheticFinalization;
import com.android.tools.r8.synthesis.SyntheticItems;
import com.android.tools.r8.utils.AndroidApp;
import com.android.tools.r8.utils.CfgPrinter;
import com.android.tools.r8.utils.CollectionUtils;
import com.android.tools.r8.utils.ExceptionUtils;
import com.android.tools.r8.utils.InternalOptions;
import com.android.tools.r8.utils.SelfRetraceTest;
import com.android.tools.r8.utils.StringDiagnostic;
import com.android.tools.r8.utils.StringUtils;
import com.android.tools.r8.utils.ThreadUtils;
import com.android.tools.r8.utils.Timing;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Iterables;
import com.google.common.io.ByteStreams;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintStream;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.function.Supplier;
/**
* The R8 compiler.
*
* <p>R8 performs whole-program optimizing compilation of Java bytecode. It supports compilation of
* Java bytecode to Java bytecode or DEX bytecode. R8 supports tree-shaking the program to remove
* unneeded code and it supports minification of the program names to reduce the size of the
* resulting program.
*
* <p>The R8 API is intentionally limited and should "do the right thing" given a command. If this
* API does not suffice please contact the D8/R8 team.
*
* <p>R8 supports some configuration using configuration files mostly compatible with the format of
* the <a href="https://www.guardsquare.com/en/proguard">ProGuard</a> optimizer.
*
* <p>The compiler is invoked by calling {@link #run(R8Command) R8.run} with an appropriate {link
* R8Command}. For example:
*
* <pre>
* R8.run(R8Command.builder()
* .addProgramFiles(inputPathA, inputPathB)
* .addLibraryFiles(androidJar)
* .setOutput(outputPath, OutputMode.DexIndexed)
* .build());
* </pre>
*
* The above reads the input files denoted by {@code inputPathA} and {@code inputPathB}, compiles
* them to DEX bytecode, using {@code androidJar} as the reference of the system runtime library,
* and then writes the result to the directory or zip archive specified by {@code outputPath}.
*/
@Keep
public class R8 {
private final Timing timing;
private final InternalOptions options;
private R8(InternalOptions options) {
this.options = options;
if (options.printMemory) {
System.gc();
}
timing = Timing.create("R8", options);
}
/**
* Main API entry for the R8 compiler.
*
* <p>The R8 API is intentionally limited and should "do the right thing" given a command. If this
* API does not suffice please contact the R8 team.
*
* @param command R8 command.
*/
public static void run(R8Command command) throws CompilationFailedException {
AndroidApp app = command.getInputApp();
InternalOptions options = command.getInternalOptions();
runForTesting(app, options);
}
/**
* Main API entry for the R8 compiler.
*
* <p>The R8 API is intentionally limited and should "do the right thing" given a command. If this
* API does not suffice please contact the R8 team.
*
* @param command R8 command.
* @param executor executor service from which to get threads for multi-threaded processing.
*/
public static void run(R8Command command, ExecutorService executor)
throws CompilationFailedException {
AndroidApp app = command.getInputApp();
InternalOptions options = command.getInternalOptions();
ExceptionUtils.withR8CompilationHandler(
command.getReporter(),
() -> {
run(app, options, executor);
});
}
static void writeApplication(
ExecutorService executorService,
AppView<?> appView,
NamingLens namingLens,
InternalOptions options,
AndroidApp inputApp)
throws ExecutionException {
InspectorImpl.runInspections(options.outputInspections, appView.appInfo().classes());
try {
Marker marker = options.getMarker(Tool.R8);
assert marker != null;
// Get the markers from the input which are different from the one created for this
// compilation
Set<Marker> markers = new HashSet<>(options.itemFactory.extractMarkers());
markers.remove(marker);
if (options.isGeneratingClassFiles()) {
new CfApplicationWriter(appView, marker, namingLens)
.write(options.getClassFileConsumer(), inputApp);
} else {
new ApplicationWriter(
appView,
// Ensure that the marker for this compilation is the first in the list.
ImmutableList.<Marker>builder().add(marker).addAll(markers).build(),
namingLens)
.write(executorService, inputApp);
}
} catch (IOException e) {
throw new RuntimeException("Cannot write application", e);
}
}
static void runForTesting(AndroidApp app, InternalOptions options)
throws CompilationFailedException {
ExecutorService executor = ThreadUtils.getExecutorService(options);
ExceptionUtils.withR8CompilationHandler(
options.reporter,
() -> {
try {
run(app, options, executor);
} finally {
executor.shutdown();
}
});
}
private static void run(AndroidApp app, InternalOptions options, ExecutorService executor)
throws IOException {
new R8(options).run(app, executor);
}
private static DirectMappedDexApplication getDirectApp(AppView<?> appView) {
return appView.appInfo().app().asDirect();
}
private void run(AndroidApp inputApp, ExecutorService executorService) throws IOException {
assert options.programConsumer != null;
if (options.quiet) {
System.setOut(new PrintStream(ByteStreams.nullOutputStream()));
}
if (this.getClass().desiredAssertionStatus()) {
options.reporter.info(
new StringDiagnostic(
"Running R8 version " + Version.LABEL + " with assertions enabled."));
}
// Synthetic assertion to check that testing assertions works and can be enabled.
assert forTesting(options, () -> !options.testing.testEnableTestAssertions);
if (options.printMemory) {
// Run GC twice to remove objects with finalizers.
System.gc();
System.gc();
Runtime runtime = Runtime.getRuntime();
System.out.println("R8 is running with total memory:" + runtime.totalMemory());
System.out.println("R8 is running with free memory:" + runtime.freeMemory());
System.out.println("R8 is running with max memory:" + runtime.maxMemory());
}
try {
AppView<AppInfoWithClassHierarchy> appView;
{
ApplicationReader applicationReader = new ApplicationReader(inputApp, options, timing);
DirectMappedDexApplication application = applicationReader.read(executorService).toDirect();
options.loadMachineDesugaredLibrarySpecification(timing, application);
MainDexInfo mainDexInfo = applicationReader.readMainDexClassesForR8(application);
// Now that the dex-application is fully loaded, close any internal archive providers.
inputApp.closeInternalArchiveProviders();
appView = AppView.createForR8(application, mainDexInfo);
appView.setAppServices(AppServices.builder(appView).build());
SyntheticItems.collectSyntheticInputs(appView);
}
// Check for potentially having pass-through of Cf-code for kotlin libraries.
options.enableCfByteCodePassThrough =
options.isGeneratingClassFiles() && KotlinMetadataUtils.mayProcessKotlinMetadata(appView);
// Up-front check for valid library setup.
if (!options.mainDexKeepRules.isEmpty()) {
MainDexListBuilder.checkForAssumedLibraryTypes(appView.appInfo());
}
DesugaredLibraryAmender.run(appView);
InterfaceMethodRewriter.checkForAssumedLibraryTypes(appView.appInfo(), options);
BackportedMethodRewriter.registerAssumedLibraryTypes(options);
if (options.enableEnumUnboxing) {
EnumUnboxingCfMethods.registerSynthesizedCodeReferences(appView.dexItemFactory());
}
if (options.shouldDesugarRecords()) {
RecordDesugaring.registerSynthesizedCodeReferences(appView.dexItemFactory());
}
CfUtilityMethodsForCodeOptimizations.registerSynthesizedCodeReferences(
appView.dexItemFactory());
// Upfront desugaring generation: Generates new program classes to be added in the app.
CfClassSynthesizerDesugaringEventConsumer classSynthesizerEventConsumer =
new CfClassSynthesizerDesugaringEventConsumer();
CfClassSynthesizerDesugaringCollection.create(appView)
.synthesizeClasses(executorService, classSynthesizerEventConsumer);
if (appView.getSyntheticItems().hasPendingSyntheticClasses()) {
appView.setAppInfo(
appView
.appInfo()
.rebuildWithClassHierarchy(
appView.getSyntheticItems().commit(appView.appInfo().app())));
}
List<ProguardConfigurationRule> synthesizedProguardRules = new ArrayList<>();
timing.begin("Strip unused code");
RuntimeTypeCheckInfo.Builder classMergingEnqueuerExtensionBuilder =
new RuntimeTypeCheckInfo.Builder(appView);
try {
// Add synthesized -assumenosideeffects from min api if relevant.
if (options.isGeneratingDex()) {
if (!ProguardConfigurationUtils.hasExplicitAssumeValuesOrAssumeNoSideEffectsRuleForMinSdk(
options.itemFactory, options.getProguardConfiguration().getRules())) {
synthesizedProguardRules.add(
ProguardConfigurationUtils.buildAssumeNoSideEffectsRuleForApiLevel(
options.itemFactory, options.getMinApiLevel()));
}
}
SubtypingInfo subtypingInfo = SubtypingInfo.create(appView);
appView.setRootSet(
RootSet.builder(
appView,
subtypingInfo,
Iterables.concat(
options.getProguardConfiguration().getRules(), synthesizedProguardRules))
.build(executorService));
// Compute the main dex rootset that will be the base of first and final main dex tracing
// before building a new appview with only live classes (and invalidating subtypingInfo).
if (!options.mainDexKeepRules.isEmpty()) {
assert appView.graphLens().isIdentityLens();
// Find classes which may have code executed before secondary dex files installation.
MainDexRootSet mainDexRootSet =
MainDexRootSet.builder(appView, subtypingInfo, options.mainDexKeepRules)
.build(executorService);
appView.setMainDexRootSet(mainDexRootSet);
appView.appInfo().unsetObsolete();
}
AnnotationRemover.Builder annotationRemoverBuilder =
options.isShrinking() ? AnnotationRemover.builder(Mode.INITIAL_TREE_SHAKING) : null;
AppView<AppInfoWithLiveness> appViewWithLiveness =
runEnqueuer(
annotationRemoverBuilder,
executorService,
appView,
subtypingInfo,
classMergingEnqueuerExtensionBuilder);
assert appView.rootSet().verifyKeptFieldsAreAccessedAndLive(appViewWithLiveness);
assert appView.rootSet().verifyKeptMethodsAreTargetedAndLive(appViewWithLiveness);
assert appView.rootSet().verifyKeptTypesAreLive(appViewWithLiveness);
assert appView.rootSet().verifyKeptItemsAreKept(appView);
appView.rootSet().checkAllRulesAreUsed(options);
if (options.proguardSeedsConsumer != null) {
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
PrintStream out = new PrintStream(bytes);
RootSetBuilder.writeSeeds(appView.appInfo().withLiveness(), out, type -> true);
out.flush();
ExceptionUtils.withConsumeResourceHandler(
options.reporter, options.proguardSeedsConsumer, bytes.toString());
ExceptionUtils.withFinishedResourceHandler(
options.reporter, options.proguardSeedsConsumer);
}
if (options.isShrinking()) {
// Mark dead proto extensions fields as neither being read nor written. This step must
// run prior to the tree pruner.
appView.withGeneratedExtensionRegistryShrinker(
shrinker -> shrinker.run(Mode.INITIAL_TREE_SHAKING));
// Build enclosing information and type-parameter information before pruning.
// TODO(b/187922482): Only consider referenced classes.
GenericSignatureContextBuilder genericContextBuilder =
GenericSignatureContextBuilder.create(appView);
// Compute if all signatures are valid before modifying them.
GenericSignatureCorrectnessHelper.createForInitialCheck(appView, genericContextBuilder)
.run(appView.appInfo().classes());
// TODO(b/226539525): Implement enum lite proto shrinking as deferred tracing.
if (appView.options().protoShrinking().isEnumLiteProtoShrinkingEnabled()) {
appView.protoShrinker().enumLiteProtoShrinker.clearDeadEnumLiteMaps();
}
TreePruner pruner = new TreePruner(appViewWithLiveness);
DirectMappedDexApplication prunedApp = pruner.run(executorService);
// Recompute the subtyping information.
Set<DexType> removedClasses = pruner.getRemovedClasses();
appView.pruneItems(
PrunedItems.builder()
.setPrunedApp(prunedApp)
.addRemovedClasses(removedClasses)
.addAdditionalPinnedItems(pruner.getMethodsToKeepForConfigurationDebugging())
.build(),
executorService);
new AbstractMethodRemover(
appViewWithLiveness, appViewWithLiveness.appInfo().computeSubtypingInfo())
.run();
AnnotationRemover annotationRemover =
annotationRemoverBuilder
.build(appViewWithLiveness, removedClasses);
annotationRemover.ensureValid().run(executorService);
new GenericSignatureRewriter(appView, NamingLens.getIdentityLens(), genericContextBuilder)
.run(appView.appInfo().classes(), executorService);
assert appView.checkForTesting(() -> allReferencesAssignedApiLevel(appViewWithLiveness));
}
} finally {
timing.end();
}
assert appView.appInfo().hasLiveness();
AppView<AppInfoWithLiveness> appViewWithLiveness = appView.withLiveness();
assert verifyNoJarApplicationReaders(appView.appInfo().classes());
assert appView.checkForTesting(() -> allReferencesAssignedApiLevel(appViewWithLiveness));
// Build conservative main dex content after first round of tree shaking. This is used
// by certain optimizations to avoid introducing additional class references into main dex
// classes, as that can cause the final number of main dex methods to grow.
// TODO(b/190941270): See if we can move this up before treepruning.
performInitialMainDexTracing(appView, executorService);
// The class type lattice elements include information about the interfaces that a class
// implements. This information can change as a result of vertical class merging, so we need
// to clear the cache, so that we will recompute the type lattice elements.
appView.dexItemFactory().clearTypeElementsCache();
if (options.getProguardConfiguration().isAccessModificationAllowed()) {
SubtypingInfo subtypingInfo = appViewWithLiveness.appInfo().computeSubtypingInfo();
GraphLens publicizedLens =
ClassAndMemberPublicizer.run(
executorService,
timing,
appViewWithLiveness.appInfo().app(),
appViewWithLiveness,
subtypingInfo);
boolean changed = appView.setGraphLens(publicizedLens);
if (changed) {
// We can now remove visibility bridges. Note that we do not need to update the
// invoke-targets here, as the existing invokes will simply dispatch to the now
// visible super-method. MemberRebinding, if run, will then dispatch it correctly.
new VisibilityBridgeRemover(appView.withLiveness()).run(executorService);
}
}
// This pass attempts to reduce the number of nests and nest size to allow further passes, and
// should therefore be run after the publicizer.
new NestReducer(appViewWithLiveness).run(executorService, timing);
appView.setGraphLens(new MemberRebindingAnalysis(appViewWithLiveness).run(executorService));
appView.appInfo().withLiveness().getFieldAccessInfoCollection().restrictToProgram(appView);
boolean isKotlinLibraryCompilationWithInlinePassThrough =
options.enableCfByteCodePassThrough && appView.hasCfByteCodePassThroughMethods();
RuntimeTypeCheckInfo runtimeTypeCheckInfo =
classMergingEnqueuerExtensionBuilder.build(appView.graphLens());
classMergingEnqueuerExtensionBuilder = null;
if (!isKotlinLibraryCompilationWithInlinePassThrough
&& options.getProguardConfiguration().isOptimizing()) {
if (options.enableVerticalClassMerging) {
timing.begin("VerticalClassMerger");
VerticalClassMergerGraphLens lens =
new VerticalClassMerger(
getDirectApp(appViewWithLiveness),
appViewWithLiveness,
executorService,
timing)
.run();
if (lens != null) {
runtimeTypeCheckInfo = runtimeTypeCheckInfo.rewriteWithLens(lens);
}
timing.end();
} else {
appView.setVerticallyMergedClasses(VerticallyMergedClasses.empty());
}
assert appView.verticallyMergedClasses() != null;
HorizontalClassMerger.createForInitialClassMerging(appViewWithLiveness)
.runIfNecessary(executorService, timing, runtimeTypeCheckInfo);
}
new ProtoNormalizer(appViewWithLiveness).run(executorService, timing);
// Clear traced methods roots to not hold on to the main dex live method set.
appView.appInfo().getMainDexInfo().clearTracedMethodRoots();
// None of the optimizations above should lead to the creation of type lattice elements.
assert appView.dexItemFactory().verifyNoCachedTypeElements();
assert appView.checkForTesting(() -> allReferencesAssignedApiLevel(appViewWithLiveness));
// Collect switch maps and ordinals maps.
if (options.enableEnumSwitchMapRemoval) {
appViewWithLiveness.setAppInfo(new SwitchMapCollector(appViewWithLiveness).run());
}
// Collect the already pruned types before creating a new app info without liveness.
// TODO: we should avoid removing liveness.
Set<DexType> prunedTypes = appView.withLiveness().appInfo().getPrunedTypes();
timing.begin("Create IR");
CfgPrinter printer = options.printCfg ? new CfgPrinter() : null;
try {
IRConverter converter = new IRConverter(appView, timing, printer);
DexApplication application =
converter.optimize(appViewWithLiveness, executorService).asDirect();
appView.setAppInfo(appView.appInfo().rebuildWithClassHierarchy(previous -> application));
} finally {
timing.end();
}
// Clear the reference type lattice element cache to reduce memory pressure.
appView.dexItemFactory().clearTypeElementsCache();
// At this point all code has been mapped according to the graph lens. We cannot remove the
// graph lens entirely, though, since it is needed for mapping all field and method signatures
// back to the original program.
timing.begin("AppliedGraphLens construction");
appView.setGraphLens(new AppliedGraphLens(appView));
timing.end();
if (options.printCfg) {
if (options.printCfgFile == null || options.printCfgFile.isEmpty()) {
System.out.print(printer.toString());
} else {
try (OutputStreamWriter writer = new OutputStreamWriter(
new FileOutputStream(options.printCfgFile),
StandardCharsets.UTF_8)) {
writer.write(printer.toString());
}
}
}
if (options.shouldRerunEnqueuer()) {
timing.begin("Post optimization code stripping");
try {
GraphConsumer keptGraphConsumer = null;
WhyAreYouKeepingConsumer whyAreYouKeepingConsumer = null;
if (options.isShrinking()) {
keptGraphConsumer = options.keptGraphConsumer;
if (!appView.rootSet().reasonAsked.isEmpty()) {
whyAreYouKeepingConsumer = new WhyAreYouKeepingConsumer(keptGraphConsumer);
keptGraphConsumer = whyAreYouKeepingConsumer;
}
}
Enqueuer enqueuer =
EnqueuerFactory.createForFinalTreeShaking(
appView,
executorService,
SubtypingInfo.create(appView),
keptGraphConsumer,
prunedTypes);
if (options.isClassMergingExtensionRequired(enqueuer.getMode())) {
classMergingEnqueuerExtensionBuilder = new RuntimeTypeCheckInfo.Builder(appView);
classMergingEnqueuerExtensionBuilder.attach(enqueuer);
}
EnqueuerResult enqueuerResult =
enqueuer.traceApplication(appView.rootSet(), executorService, timing);
appView.setAppInfo(enqueuerResult.getAppInfo());
// Rerunning the enqueuer should not give rise to any method rewritings.
appView.withGeneratedMessageLiteBuilderShrinker(
shrinker ->
shrinker.rewriteDeadBuilderReferencesFromDynamicMethods(
appViewWithLiveness, executorService, timing));
if (options.isShrinking()) {
// Mark dead proto extensions fields as neither being read nor written. This step must
// run prior to the tree pruner.
TreePrunerConfiguration treePrunerConfiguration =
appView.withGeneratedExtensionRegistryShrinker(
shrinker -> shrinker.run(enqueuer.getMode()),
DefaultTreePrunerConfiguration.getInstance());
GenericSignatureContextBuilder genericContextBuilder =
GenericSignatureContextBuilder.create(appView);
TreePruner pruner = new TreePruner(appViewWithLiveness, treePrunerConfiguration);
DirectMappedDexApplication application = pruner.run(executorService);
Set<DexType> removedClasses = pruner.getRemovedClasses();
if (options.usageInformationConsumer != null) {
ExceptionUtils.withFinishedResourceHandler(
options.reporter, options.usageInformationConsumer);
}
appView.pruneItems(
PrunedItems.builder()
.setPrunedApp(application)
.addRemovedClasses(CollectionUtils.mergeSets(prunedTypes, removedClasses))
.addAdditionalPinnedItems(pruner.getMethodsToKeepForConfigurationDebugging())
.build(),
executorService);
new BridgeHoisting(appViewWithLiveness).run();
assert Inliner.verifyAllSingleCallerMethodsHaveBeenPruned(appViewWithLiveness);
assert Inliner.verifyAllMultiCallerInlinedMethodsHaveBeenPruned(appView);
assert appView.allMergedClasses().verifyAllSourcesPruned(appViewWithLiveness);
assert appView.validateUnboxedEnumsHaveBeenPruned();
assert appView.withLiveness().appInfo().verifyNoIteratingOverPrunedClasses();
processWhyAreYouKeepingAndCheckDiscarded(
appView.rootSet(),
() -> appView.appInfo().app().classesWithDeterministicOrder(),
whyAreYouKeepingConsumer,
appView,
enqueuer,
false,
options,
timing,
executorService);
// Remove annotations that refer to types that no longer exist.
AnnotationRemover.builder(Mode.FINAL_TREE_SHAKING)
.build(appView.withLiveness(), removedClasses)
.run(executorService);
new GenericSignatureRewriter(
appView, NamingLens.getIdentityLens(), genericContextBuilder)
.run(appView.appInfo().classes(), executorService);
assert appView.checkForTesting(
() ->
GenericSignatureCorrectnessHelper.createForVerification(
appView, GenericSignatureContextBuilder.create(appView))
.run(appView.appInfo().classes())
.isValid())
: "Could not validate generic signatures";
// Synthesize fields for triggering class initializers.
new ClassInitFieldSynthesizer(appViewWithLiveness).run(executorService);
}
} finally {
timing.end();
}
if (appView.options().protoShrinking().isProtoShrinkingEnabled()) {
if (appView.options().protoShrinking().isEnumLiteProtoShrinkingEnabled()) {
appView.protoShrinker().enumLiteProtoShrinker.verifyDeadEnumLiteMapsAreDead();
}
IRConverter converter = new IRConverter(appView, timing, null);
// If proto shrinking is enabled, we need to reprocess every dynamicMethod(). This ensures
// that proto fields that have been removed by the second round of tree shaking are also
// removed from the proto schemas in the bytecode.
appView.withGeneratedMessageLiteShrinker(
shrinker -> shrinker.postOptimizeDynamicMethods(converter, executorService, timing));
// If proto shrinking is enabled, we need to post-process every
// findLiteExtensionByNumber() method. This ensures that there are no references to dead
// extensions that have been removed by the second round of tree shaking.
appView.withGeneratedExtensionRegistryShrinker(
shrinker ->
shrinker.postOptimizeGeneratedExtensionRegistry(
converter, executorService, timing));
}
}
performFinalMainDexTracing(appView, executorService);
if (appView.appInfo().hasLiveness()) {
RecordFieldValuesRewriter recordFieldArrayRemover =
RecordFieldValuesRewriter.create(appView.withLiveness());
if (recordFieldArrayRemover != null) {
recordFieldArrayRemover.rewriteRecordFieldValues();
}
}
// Remove unneeded visibility bridges that have been inserted for member rebinding.
// This can only be done if we have AppInfoWithLiveness.
if (appView.appInfo().hasLiveness()) {
new VisibilityBridgeRemover(appView.withLiveness()).run(executorService);
} else {
// If we don't have AppInfoWithLiveness here, it must be because we are not shrinking. When
// we are not shrinking, we can't move visibility bridges. In principle, though, it would be
// possible to remove visibility bridges that have been synthesized by R8, but we currently
// do not have this information.
assert !options.isShrinking();
}
// Insert a member rebinding oracle in the graph to ensure that all subsequent rewritings of
// the application has an applied oracle for looking up non-rebound references.
appView.setGraphLens(MemberRebindingIdentityLensFactory.create(appView, executorService));
if (appView.appInfo().hasLiveness()) {
SyntheticFinalization.finalizeWithLiveness(appView.withLiveness(), executorService);
} else {
SyntheticFinalization.finalizeWithClassHierarchy(appView, executorService);
}
// Read any -applymapping input to allow for repackaging to not relocate the classes.
timing.begin("read -applymapping file");
appView.loadApplyMappingSeedMapper();
timing.end();
// Perform repackaging.
if (options.isRepackagingEnabled()) {
DirectMappedDexApplication.Builder appBuilder =
appView.appInfo().app().asDirect().builder();
RepackagingLens lens =
new Repackaging(appView.withLiveness()).run(appBuilder, executorService, timing);
if (lens != null) {
appView.rewriteWithLensAndApplication(lens, appBuilder.build());
}
}
if (appView.appInfo().hasLiveness()) {
assert Repackaging.verifyIdentityRepackaging(appView.withLiveness());
}
// Clear the reference type lattice element cache. This is required since class merging may
// need to build IR.
appView.dexItemFactory().clearTypeElementsCache();
GenericSignatureContextBuilder genericContextBuilderBeforeFinalMerging =
GenericSignatureContextBuilder.create(appView);
// Run horizontal class merging. This runs even if shrinking is disabled to ensure synthetics
// are always merged.
HorizontalClassMerger.createForFinalClassMerging(appView)
.runIfNecessary(
executorService,
timing,
classMergingEnqueuerExtensionBuilder != null
? classMergingEnqueuerExtensionBuilder.build(appView.graphLens())
: null);
// Perform minification.
NamingLens namingLens;
if (options.getProguardConfiguration().hasApplyMappingFile()) {
timing.begin("apply-mapping");
namingLens = new ProguardMapMinifier(appView.withLiveness()).run(executorService, timing);
timing.end();
// Clear the applymapping data
appView.clearApplyMappingSeedMapper();
} else if (options.isMinifying()) {
timing.begin("Minification");
namingLens = new Minifier(appView.withLiveness()).run(executorService, timing);
timing.end();
} else {
namingLens = NamingLens.getIdentityLens();
}
assert verifyMovedMethodsHaveOriginalMethodPosition(appView, getDirectApp(appView));
// If a method filter is present don't produce output since the application is likely partial.
if (options.hasMethodsFilter()) {
System.out.println("Finished compilation with method filter: ");
options.methodsFilter.forEach(m -> System.out.println(" - " + m));
return;
}
// Validity checks.
assert getDirectApp(appView).verifyCodeObjectsOwners();
assert appView.appInfo().classes().stream().allMatch(clazz -> clazz.isValid(options));
if (options.isShrinking()
|| options.isMinifying()
|| options.getProguardConfiguration().hasApplyMappingFile()) {
assert appView.rootSet().verifyKeptItemsAreKept(appView);
}
assert options.testing.disableMappingToOriginalProgramVerification
|| appView
.graphLens()
.verifyMappingToOriginalProgram(
appView,
new ApplicationReader(inputApp.withoutMainDexList(), options, timing)
.readWithoutDumping(executorService));
// Report synthetic rules (only for testing).
// TODO(b/120959039): Move this to being reported through the graph consumer.
if (options.syntheticProguardRulesConsumer != null) {
options.syntheticProguardRulesConsumer.accept(synthesizedProguardRules);
}
namingLens = PrefixRewritingNamingLens.createPrefixRewritingNamingLens(appView, namingLens);
namingLens = RecordRewritingNamingLens.createRecordRewritingNamingLens(appView, namingLens);
new ApiReferenceStubber(appView).run(executorService);
timing.begin("MinifyKotlinMetadata");
new KotlinMetadataRewriter(appView, namingLens).runForR8(executorService);
timing.end();
new GenericSignatureRewriter(appView, namingLens, genericContextBuilderBeforeFinalMerging)
.run(appView.appInfo().classes(), executorService);
assert appView.checkForTesting(
() ->
!options.isShrinking()
|| GenericSignatureCorrectnessHelper.createForVerification(
appView, GenericSignatureContextBuilder.create(appView))
.run(appView.appInfo().classes())
.isValid())
: "Could not validate generic signatures";
new DesugaredLibraryKeepRuleGenerator(appView, namingLens).runIfNecessary(timing);
// Generate the resulting application resources.
writeApplication(
executorService,
appView,
namingLens,
options,
inputApp);
assert appView.getDontWarnConfiguration().validate(options);
options.printWarnings();
} catch (ExecutionException e) {
throw unwrapExecutionException(e);
} finally {
options.signalFinishedToConsumers();
// Dump timings.
if (options.printTimes) {
timing.report();
}
}
}
private static boolean allReferencesAssignedApiLevel(
AppView<? extends AppInfoWithClassHierarchy> appView) {
if (!appView.options().apiModelingOptions().checkAllApiReferencesAreSet
|| appView.options().configurationDebugging) {
return true;
}
// This will return false if we find anything in the library which is not modeled.
for (DexProgramClass clazz : appView.appInfo().classesWithDeterministicOrder()) {
clazz.forEachProgramMember(
member -> {
assert !member.getDefinition().getApiLevel().isNotSetApiLevel()
: "Every member should have been analyzed";
assert appView.options().apiModelingOptions().enableApiCallerIdentification
|| member.getDefinition().getApiLevel().isUnknownApiLevel()
: "Every member should have level UNKNOWN";
});
}
return true;
}
private void performInitialMainDexTracing(
AppView<AppInfoWithClassHierarchy> appView, ExecutorService executorService)
throws ExecutionException {
if (options.mainDexKeepRules.isEmpty()) {
return;
}
assert appView.graphLens().isIdentityLens();
// Find classes which may have code executed before secondary dex files installation by
// computing from the initially computed main dex root set.
MainDexInfo mainDexInfo =
EnqueuerFactory.createForInitialMainDexTracing(
appView, executorService, SubtypingInfo.create(appView))
.traceMainDex(executorService, timing);
appView.setAppInfo(appView.appInfo().rebuildWithMainDexInfo(mainDexInfo));
}
private void performFinalMainDexTracing(
AppView<AppInfoWithClassHierarchy> appView, ExecutorService executorService)
throws ExecutionException {
if (options.mainDexKeepRules.isEmpty()) {
return;
}
// No need to build a new main dex root set
assert appView.getMainDexRootSet() != null;
GraphConsumer mainDexKeptGraphConsumer = options.mainDexKeptGraphConsumer;
WhyAreYouKeepingConsumer whyAreYouKeepingConsumer = null;
if (!appView.getMainDexRootSet().reasonAsked.isEmpty()) {
whyAreYouKeepingConsumer = new WhyAreYouKeepingConsumer(mainDexKeptGraphConsumer);
mainDexKeptGraphConsumer = whyAreYouKeepingConsumer;
}
Enqueuer enqueuer =
EnqueuerFactory.createForFinalMainDexTracing(
appView, executorService, SubtypingInfo.create(appView), mainDexKeptGraphConsumer);
// Find classes which may have code executed before secondary dex files installation.
MainDexInfo mainDexInfo = enqueuer.traceMainDex(executorService, timing);
appView.setAppInfo(appView.appInfo().rebuildWithMainDexInfo(mainDexInfo));
processWhyAreYouKeepingAndCheckDiscarded(
appView.getMainDexRootSet(),
() -> {
ArrayList<DexProgramClass> classes = new ArrayList<>();
// TODO(b/131668850): This is not a deterministic order!
mainDexInfo.forEach(
type -> {
DexClass clazz = appView.definitionFor(type);
assert clazz.isProgramClass();
classes.add(clazz.asProgramClass());
});
return classes;
},
whyAreYouKeepingConsumer,
appView,
enqueuer,
true,
options,
timing,
executorService);
}
private static boolean verifyMovedMethodsHaveOriginalMethodPosition(
AppView<?> appView, DirectMappedDexApplication application) {
application
.classesWithDeterministicOrder()
.forEach(
clazz ->
clazz.forEachProgramMethod(
method -> {
DexMethod originalMethod =
appView.graphLens().getOriginalMethodSignature(method.getReference());
if (originalMethod != method.getReference()) {
DexEncodedMethod definition = method.getDefinition();
Code code = definition.getCode();
if (code == null) {
return;
}
if (code.isCfCode()) {
assert verifyOriginalMethodInPosition(code.asCfCode(), originalMethod);
} else if (code.isDexCode()) {
assert verifyOriginalMethodInDebugInfo(code.asDexCode(), originalMethod);
} else {
assert code.isDefaultInstanceInitializerCode() || code.isThrowNullCode();
}
}
}));
return true;
}
private static boolean verifyOriginalMethodInPosition(CfCode code, DexMethod originalMethod) {
for (CfInstruction instruction : code.getInstructions()) {
if (!instruction.isPosition()) {
continue;
}
CfPosition position = instruction.asPosition();
assert position.getPosition().getOutermostCaller().getMethod() == originalMethod;
}
return true;
}
private static boolean verifyOriginalMethodInDebugInfo(DexCode code, DexMethod originalMethod) {
if (code.getDebugInfo() == null || code.getDebugInfo().isPcBasedInfo()) {
return true;
}
for (DexDebugEvent event : code.getDebugInfo().asEventBasedInfo().events) {
assert !event.isPositionFrame()
|| event.asSetPositionFrame().getPosition().getOutermostCaller().getMethod()
== originalMethod;
}
return true;
}
private AppView<AppInfoWithLiveness> runEnqueuer(
AnnotationRemover.Builder annotationRemoverBuilder,
ExecutorService executorService,
AppView<AppInfoWithClassHierarchy> appView,
SubtypingInfo subtypingInfo,
RuntimeTypeCheckInfo.Builder classMergingEnqueuerExtensionBuilder)
throws ExecutionException {
Enqueuer enqueuer =
EnqueuerFactory.createForInitialTreeShaking(appView, executorService, subtypingInfo);
enqueuer.setAnnotationRemoverBuilder(annotationRemoverBuilder);
if (appView.options().enableInitializedClassesInInstanceMethodsAnalysis) {
enqueuer.registerAnalysis(new InitializedClassesInInstanceMethodsAnalysis(appView));
}
if (AssertionsRewriter.isEnabled(appView.options())) {
ClassInitializerAssertionEnablingAnalysis analysis =
new ClassInitializerAssertionEnablingAnalysis(
appView, OptimizationFeedbackSimple.getInstance());
enqueuer.registerAnalysis(analysis);
enqueuer.registerFieldAccessAnalysis(analysis);
}
if (options.isClassMergingExtensionRequired(enqueuer.getMode())) {
classMergingEnqueuerExtensionBuilder.attach(enqueuer);
}
EnqueuerResult enqueuerResult =
enqueuer.traceApplication(appView.rootSet(), executorService, timing);
AppView<AppInfoWithLiveness> appViewWithLiveness =
appView.setAppInfo(enqueuerResult.getAppInfo());
if (InternalOptions.assertionsEnabled()) {
// Register the dead proto types. These are needed to verify that no new missing types are
// reported and that no dead proto types are referenced in the generated application.
appViewWithLiveness.withProtoShrinker(
shrinker ->
shrinker.setDeadProtoTypes(appViewWithLiveness.appInfo().getDeadProtoTypes()));
}
appView.withGeneratedMessageLiteBuilderShrinker(
shrinker ->
shrinker.rewriteDeadBuilderReferencesFromDynamicMethods(
appViewWithLiveness, executorService, timing));
return appViewWithLiveness;
}
static void processWhyAreYouKeepingAndCheckDiscarded(
RootSet rootSet,
Supplier<Iterable<DexProgramClass>> classes,
WhyAreYouKeepingConsumer whyAreYouKeepingConsumer,
AppView<? extends AppInfoWithClassHierarchy> appView,
Enqueuer enqueuer,
boolean forMainDex,
InternalOptions options,
Timing timing,
ExecutorService executorService)
throws ExecutionException {
if (whyAreYouKeepingConsumer != null) {
for (DexReference reference : rootSet.reasonAsked) {
whyAreYouKeepingConsumer.printWhyAreYouKeeping(
enqueuer.getGraphReporter().getGraphNode(reference), System.out);
}
}
if (appView.options().testing.dontReportFailingCheckDiscarded) {
return;
}
DiscardedChecker discardedChecker =
forMainDex ? DiscardedChecker.createForMainDex(appView) : DiscardedChecker.create(appView);
List<ProgramDefinition> failed = discardedChecker.run(classes.get(), executorService);
if (failed.isEmpty()) {
return;
}
// If there is no kept-graph info, re-run the enqueueing to compute it.
if (whyAreYouKeepingConsumer == null) {
whyAreYouKeepingConsumer = new WhyAreYouKeepingConsumer(null);
SubtypingInfo subtypingInfo = SubtypingInfo.create(appView);
if (forMainDex) {
enqueuer =
EnqueuerFactory.createForFinalMainDexTracing(
appView, executorService, subtypingInfo, whyAreYouKeepingConsumer);
enqueuer.traceMainDex(executorService, timing);
} else {
enqueuer =
EnqueuerFactory.createForWhyAreYouKeeping(
appView, executorService, subtypingInfo, whyAreYouKeepingConsumer);
enqueuer.traceApplication(
rootSet,
executorService,
timing);
}
}
options.reporter.error(
new CheckDiscardDiagnostic.Builder()
.addFailedItems(failed, enqueuer.getGraphReporter(), whyAreYouKeepingConsumer)
.build());
options.reporter.failIfPendingErrors();
}
private static boolean verifyNoJarApplicationReaders(Collection<DexProgramClass> classes) {
for (DexProgramClass clazz : classes) {
for (DexEncodedMethod method : clazz.methods()) {
if (method.getCode() != null) {
assert method.getCode().verifyNoInputReaders();
}
}
}
return true;
}
private static void run(String[] args) throws CompilationFailedException {
R8Command command = R8Command.parse(args, CommandLineOrigin.INSTANCE).build();
if (command.isPrintHelp()) {
SelfRetraceTest.test();
System.out.println(USAGE_MESSAGE);
return;
}
if (command.isPrintVersion()) {
System.out.println("R8 " + Version.getVersionString());
return;
}
InternalOptions options = command.getInternalOptions();
ExecutorService executorService = ThreadUtils.getExecutorService(options);
try {
ExceptionUtils.withR8CompilationHandler(options.reporter, () ->
run(command.getInputApp(), options, executorService));
} finally {
executorService.shutdown();
}
}
/**
* Command-line entry to R8.
*
* See {@link R8Command#USAGE_MESSAGE} or run {@code r8 --help} for usage information.
*/
public static void main(String[] args) {
if (args.length == 0) {
throw new RuntimeException(StringUtils.joinLines("Invalid invocation.", USAGE_MESSAGE));
}
ExceptionUtils.withMainProgramHandler(() -> run(args));
}
}