blob: 6c8d4cf5583d89703faa9cf26bfee9688c366d0d [file] [log] [blame]
// Copyright (c) 2017, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8.graph;
import com.android.tools.r8.graph.ResolutionResult.ArrayCloneMethodResult;
import com.android.tools.r8.graph.ResolutionResult.ClassNotFoundResult;
import com.android.tools.r8.graph.ResolutionResult.IncompatibleClassResult;
import com.android.tools.r8.graph.ResolutionResult.MultiResolutionResult;
import com.android.tools.r8.graph.ResolutionResult.NoSuchMethodResult;
import com.android.tools.r8.graph.ResolutionResult.SingleResolutionResult;
import com.android.tools.r8.origin.Origin;
import com.android.tools.r8.shaking.AppInfoWithLiveness;
import com.android.tools.r8.utils.InternalOptions;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableMap.Builder;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
public class AppInfo implements DexDefinitionSupplier {
private final DexApplication app;
private final DexItemFactory dexItemFactory;
private final ConcurrentHashMap<DexType, Map<Descriptor<?,?>, KeyedDexItem<?>>> definitions =
new ConcurrentHashMap<>();
// For some optimizations, e.g. optimizing synthetic classes, we may need to resolve the current
// class being optimized.
final ConcurrentHashMap<DexType, DexProgramClass> synthesizedClasses = new ConcurrentHashMap<>();
// Set when a new AppInfo replaces a previous one. All public methods should verify that the
// current instance is not obsolete, to ensure that we almost use the most recent AppInfo.
private boolean obsolete;
public AppInfo(DexApplication application) {
this.app = application;
this.dexItemFactory = app.dexItemFactory;
}
protected AppInfo(AppInfo previous) {
assert !previous.isObsolete();
this.app = previous.app;
this.dexItemFactory = app.dexItemFactory;
this.definitions.putAll(previous.definitions);
copyMetadataFromPrevious(previous);
}
protected InternalOptions options() {
return app.options;
}
public void copyMetadataFromPrevious(AppInfo previous) {
this.synthesizedClasses.putAll(previous.synthesizedClasses);
}
public boolean isObsolete() {
return obsolete;
}
public void markObsolete() {
obsolete = true;
}
public void unsetObsolete() {
obsolete = false;
}
public boolean checkIfObsolete() {
assert !isObsolete();
return true;
}
public DexApplication app() {
assert checkIfObsolete();
return app;
}
@Override
public DexItemFactory dexItemFactory() {
assert checkIfObsolete();
return dexItemFactory;
}
public void addSynthesizedClass(DexProgramClass clazz) {
assert checkIfObsolete();
assert clazz.type.isD8R8SynthesizedClassType();
DexProgramClass previous = synthesizedClasses.put(clazz.type, clazz);
assert previous == null || previous == clazz;
}
public Collection<DexProgramClass> getSynthesizedClassesForSanityCheck() {
assert checkIfObsolete();
return Collections.unmodifiableCollection(synthesizedClasses.values());
}
private Map<Descriptor<?,?>, KeyedDexItem<?>> computeDefinitions(DexType type) {
Builder<Descriptor<?,?>, KeyedDexItem<?>> builder = ImmutableMap.builder();
DexClass clazz = app.definitionFor(type);
if (clazz != null) {
clazz.forEachMethod(method -> builder.put(method.getKey(), method));
clazz.forEachField(field -> builder.put(field.getKey(), field));
}
return builder.build();
}
public Iterable<DexProgramClass> classes() {
assert checkIfObsolete();
return app.classes();
}
public Iterable<DexProgramClass> classesWithDeterministicOrder() {
assert checkIfObsolete();
return app.classesWithDeterministicOrder();
}
@Override
public DexDefinition definitionFor(DexReference reference) {
assert checkIfObsolete();
if (reference.isDexType()) {
return definitionFor(reference.asDexType());
}
if (reference.isDexMethod()) {
return definitionFor(reference.asDexMethod());
}
assert reference.isDexField();
return definitionFor(reference.asDexField());
}
@Override
public DexClass definitionFor(DexType type) {
assert checkIfObsolete();
DexProgramClass cached = synthesizedClasses.get(type);
if (cached != null) {
assert app.definitionFor(type) == null;
return cached;
}
return app.definitionFor(type);
}
@Override
public DexProgramClass definitionForProgramType(DexType type) {
return app.programDefinitionFor(type);
}
public Origin originFor(DexType type) {
assert checkIfObsolete();
DexClass definition = app.definitionFor(type);
return definition == null ? Origin.unknown() : definition.origin;
}
@Override
public DexEncodedMethod definitionFor(DexMethod method) {
assert checkIfObsolete();
DexType holderType = method.holder;
DexEncodedMethod cached = (DexEncodedMethod) getDefinitions(holderType).get(method);
if (cached != null && cached.isObsolete()) {
definitions.remove(holderType);
cached = (DexEncodedMethod) getDefinitions(holderType).get(method);
}
return cached;
}
@Override
public DexEncodedField definitionFor(DexField field) {
assert checkIfObsolete();
return (DexEncodedField) getDefinitions(field.holder).get(field);
}
private Map<Descriptor<?,?>, KeyedDexItem<?>> getDefinitions(DexType type) {
Map<Descriptor<?,?>, KeyedDexItem<?>> typeDefinitions = definitions.get(type);
if (typeDefinitions != null) {
return typeDefinitions;
}
typeDefinitions = computeDefinitions(type);
Map<Descriptor<?,?>, KeyedDexItem<?>> existing = definitions.putIfAbsent(type, typeDefinitions);
return existing != null ? existing : typeDefinitions;
}
/**
* Lookup static method following the super chain from the holder of {@code method}.
* <p>
* This method will resolve the method on the holder of {@code method} and only return a non-null
* value if the result of resolution was a static, non-abstract method.
*
* @param method the method to lookup
* @return The actual target for {@code method} or {@code null} if none found.
*/
public DexEncodedMethod lookupStaticTarget(DexMethod method) {
assert checkIfObsolete();
ResolutionResult resolutionResult = resolveMethod(method.holder, method);
DexEncodedMethod target = resolutionResult.getSingleTarget();
return target == null || target.isStatic() ? target : null;
}
/**
* Lookup super method following the super chain from the holder of {@code method}.
*
* <p>This method will resolve the method on the holder of {@code method} and only return a
* non-null value if the result of resolution was an instance (i.e. non-static) method.
*
* @param method the method to lookup
* @param invocationContext the class the invoke is contained in, i.e., the holder of the caller.
* @return The actual target for {@code method} or {@code null} if none found.
*/
public DexEncodedMethod lookupSuperTarget(DexMethod method, DexType invocationContext) {
assert checkIfObsolete();
// Make sure we are not chasing NotFoundError.
ResolutionResult resolutionResult = resolveMethod(method.holder, method);
if (resolutionResult.asListOfTargets().isEmpty()) {
return null;
}
// According to
// https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokespecial, use
// the "symbolic reference" if the "symbolic reference" does not name a class.
if (definitionFor(method.holder).isInterface()) {
return resolveMethodOnInterface(method.holder, method).getSingleTarget();
}
// Then, resume on the search, but this time, starting from the holder of the caller.
DexClass contextClass = definitionFor(invocationContext);
if (contextClass == null || contextClass.superType == null) {
return null;
}
resolutionResult = resolveMethod(contextClass.superType, method);
DexEncodedMethod target = resolutionResult.getSingleTarget();
return target == null || !target.isStatic() ? target : null;
}
/**
* Lookup direct method following the super chain from the holder of {@code method}.
* <p>
* This method will lookup private and constructor methods.
*
* @param method the method to lookup
* @return The actual target for {@code method} or {@code null} if none found.
*/
public DexEncodedMethod lookupDirectTarget(DexMethod method) {
assert checkIfObsolete();
ResolutionResult resolutionResult = resolveMethod(method.holder, method);
DexEncodedMethod target = resolutionResult.getSingleTarget();
return target == null || target.isDirectMethod() ? target : null;
}
/**
* Lookup virtual method starting in type and following the super chain.
* <p>
* This method will resolve the method on the holder of {@code method} and only return a
* non-null value if the result of resolution was a non-static, non-private method.
*/
public DexEncodedMethod lookupVirtualTarget(DexType type, DexMethod method) {
assert checkIfObsolete();
assert type.isClassType() || type.isArrayType();
ResolutionResult resolutionResult = resolveMethod(type, method);
DexEncodedMethod target = resolutionResult.getSingleTarget();
return target == null || target.isVirtualMethod() ? target : null;
}
/**
* Implements resolution of a method descriptor against a target type.
*
* <p>This method will query the definition of the holder to decide on which resolution to use. If
* the holder is an interface, it delegates to {@link #resolveMethodOnInterface(DexType,
* DexMethod)}, otherwise {@link #resolveMethodOnClass(DexType, DexMethod)} is used.
*
* <p>This is to overcome the shortcoming of the DEX file format that does not allow to encode the
* kind of a method reference.
*/
public ResolutionResult resolveMethod(DexType holder, DexMethod method) {
assert checkIfObsolete();
if (holder.isArrayType()) {
return resolveMethodOnArray(holder, method);
}
DexClass definition = definitionFor(holder);
if (definition == null) {
return ClassNotFoundResult.INSTANCE;
}
return resolveMethod(definition, method);
}
public ResolutionResult resolveMethod(DexClass holder, DexMethod method) {
return holder.isInterface()
? resolveMethodOnInterface(holder, method)
: resolveMethodOnClass(holder, method);
}
/**
* Implements resolution of a method descriptor against a target type.
*
* <p>The boolean isInterface parameter denotes if the method reference is an interface method
* reference, and if so method resolution is done according to interface method resolution.
*
* @param holder Type at which to initiate the resolution.
* @param method Method descriptor for resolution (the field method.holder is ignored).
* @param isInterface Indicates if resolution is to be done according to class or interface.
* @return The result of resolution.
*/
public ResolutionResult resolveMethod(DexType holder, DexMethod method, boolean isInterface) {
assert checkIfObsolete();
return isInterface
? resolveMethodOnInterface(holder, method)
: resolveMethodOnClass(holder, method);
}
/**
* Implements resolution of a method descriptor against an array type.
*
* <p>See <a href="https://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.7">Section
* 10.7 of the Java Language Specification</a>. All invokations will have target java.lang.Object
* except clone which has no target.
*/
private ResolutionResult resolveMethodOnArray(DexType holder, DexMethod method) {
assert checkIfObsolete();
assert holder.isArrayType();
if (method.name == dexItemFactory.cloneMethodName) {
return ArrayCloneMethodResult.INSTANCE;
} else {
return resolveMethodOnClass(dexItemFactory.objectType, method);
}
}
/**
* Implements resolution of a method descriptor against a class type.
* <p>
* See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.3 of the JVM Spec</a>.
* <p>
* The resolved method is not the method that will actually be invoked. Which methods gets
* invoked depends on the invoke instruction used. However, it is always safe to rewrite
* any invoke on the given descriptor to a corresponding invoke on the resolved descriptor, as the
* resolved method is used as basis for dispatch.
*/
public ResolutionResult resolveMethodOnClass(DexType holder, DexMethod method) {
assert checkIfObsolete();
if (holder.isArrayType()) {
return resolveMethodOnArray(holder, method);
}
DexClass clazz = definitionFor(holder);
if (clazz == null) {
return ClassNotFoundResult.INSTANCE;
}
// Step 1: If holder is an interface, resolution fails with an ICCE. We return null.
if (clazz.isInterface()) {
return IncompatibleClassResult.INSTANCE;
}
return resolveMethodOnClass(clazz, method);
}
public ResolutionResult resolveMethodOnClass(DexClass clazz, DexMethod method) {
assert checkIfObsolete();
assert !clazz.isInterface();
// Step 2:
DexEncodedMethod singleTarget = resolveMethodOnClassStep2(clazz, method);
if (singleTarget != null) {
return new SingleResolutionResult(singleTarget);
}
// Finally Step 3:
return resolveMethodStep3(clazz, method);
}
/**
* Implements step 2 of method resolution on classes as per
* <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.3 of the JVM Spec</a>.
*/
private DexEncodedMethod resolveMethodOnClassStep2(DexClass clazz, DexMethod method) {
// Pt. 1: Signature polymorphic method check. Those are only allowed on
// java.lang.invoke.MethodHandle, so we only need to look for it if we are looking at
// that type.
// See also <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9">
// Section 2.9 of the JVM Spec</a>.
if (clazz.type == dexItemFactory.methodHandleType) {
DexMethod signaturePolymorphic = dexItemFactory.createMethod(clazz.type,
dexItemFactory.createProto(
dexItemFactory.objectType, dexItemFactory.objectArrayType),
method.name);
DexEncodedMethod result = clazz.lookupMethod(signaturePolymorphic);
// Check we found a result and that it has the required access flags for signature polymorphic
// functions.
if (result != null && result.accessFlags.isNative() && result.accessFlags.isVarargs()) {
return result;
}
}
// Pt 2: Find a method that matches the descriptor.
DexEncodedMethod result = clazz.lookupMethod(method);
if (result != null) {
return result;
}
// Pt 3: Apply step two to direct superclass of holder.
if (clazz.superType != null) {
DexClass superClass = definitionFor(clazz.superType);
if (superClass != null) {
return resolveMethodOnClassStep2(superClass, method);
}
}
return null;
}
/**
* Implements step 3 of
* <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.3 of the JVM Spec</a>. As this is the same for interfaces and classes, we share
* one implementation.
*/
private ResolutionResult resolveMethodStep3(DexClass clazz, DexMethod method) {
MaximallySpecificMethodsBuilder builder = new MaximallySpecificMethodsBuilder();
resolveMethodStep3Helper(clazz, method, builder);
return builder.resolve();
}
/** Helper method that builds the set of maximally specific methods. */
private void resolveMethodStep3Helper(
DexClass clazz, DexMethod method, MaximallySpecificMethodsBuilder builder) {
for (DexType iface : clazz.interfaces.values) {
DexClass definiton = definitionFor(iface);
if (definiton == null) {
// Ignore missing interface definitions.
continue;
}
assert definiton.isInterface();
DexEncodedMethod result = definiton.lookupMethod(method);
if (isMaximallySpecificCandidate(result)) {
// The candidate is added and doing so will prohibit shadowed methods from being in the set.
builder.addCandidate(definiton, result, this);
} else {
// Look at the super-interfaces of this class and keep searching.
resolveMethodStep3Helper(definiton, method, builder);
}
}
// Now look at indirect super interfaces.
if (clazz.superType != null) {
DexClass superClass = definitionFor(clazz.superType);
if (superClass != null) {
resolveMethodStep3Helper(superClass, method, builder);
}
}
}
/**
* A candidate for being a maximally specific method must have neither its private, nor its static
* flag set. A candidate may still not be maximally specific, which entails that no subinterfaces
* from also contribute with a candidate to the type. That is not determined by this method.
*/
private boolean isMaximallySpecificCandidate(DexEncodedMethod method) {
return method != null && !method.accessFlags.isPrivate() && !method.accessFlags.isStatic();
}
/**
* Implements resolution of a method descriptor against an interface type.
* <p>
* See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.4 of the JVM Spec</a>.
* <p>
* The resolved method is not the method that will actually be invoked. Which methods gets
* invoked depends on the invoke instruction used. However, it is always save to rewrite
* any invoke on the given descriptor to a corresponding invoke on the resolved descriptor, as the
* resolved method is used as basis for dispatch.
*/
public ResolutionResult resolveMethodOnInterface(DexType holder, DexMethod desc) {
assert checkIfObsolete();
if (holder.isArrayType()) {
return IncompatibleClassResult.INSTANCE;
}
// Step 1: Lookup interface.
DexClass definition = definitionFor(holder);
// If the definition is not an interface, resolution fails with an ICCE. We just return the
// empty result here.
if (definition == null) {
return ClassNotFoundResult.INSTANCE;
}
if (!definition.isInterface()) {
return IncompatibleClassResult.INSTANCE;
}
return resolveMethodOnInterface(definition, desc);
}
public ResolutionResult resolveMethodOnInterface(DexClass definition, DexMethod desc) {
assert checkIfObsolete();
assert definition.isInterface();
// Step 2: Look for exact method on interface.
DexEncodedMethod result = definition.lookupMethod(desc);
if (result != null) {
return new SingleResolutionResult(result);
}
// Step 3: Look for matching method on object class.
DexClass objectClass = definitionFor(dexItemFactory.objectType);
if (objectClass == null) {
return ClassNotFoundResult.INSTANCE;
}
result = objectClass.lookupMethod(desc);
if (result != null && result.accessFlags.isPublic() && !result.accessFlags.isAbstract()) {
return new SingleResolutionResult(result);
}
// Step 3: Look for maximally-specific superinterface methods or any interface definition.
// This is the same for classes and interfaces.
return resolveMethodStep3(definition, desc);
}
/**
* Lookup instance field starting in type and following the interface and super chain.
* <p>
* The result is the field that will be hit at runtime, if such field is known. A result
* of null indicates that the field is either undefined or not an instance field.
*/
public DexEncodedField lookupInstanceTarget(DexType type, DexField field) {
assert checkIfObsolete();
assert type.isClassType();
DexEncodedField result = resolveFieldOn(type, field);
return result == null || result.accessFlags.isStatic() ? null : result;
}
/**
* Lookup static field starting in type and following the interface and super chain.
* <p>
* The result is the field that will be hit at runtime, if such field is known. A result
* of null indicates that the field is either undefined or not a static field.
*/
public DexEncodedField lookupStaticTarget(DexType type, DexField field) {
assert checkIfObsolete();
assert type.isClassType();
DexEncodedField result = resolveFieldOn(type, field);
return result == null || !result.accessFlags.isStatic() ? null : result;
}
/**
* Implements resolution of a field descriptor against the holder of the field. See also {@link
* #resolveFieldOn}.
*/
public DexEncodedField resolveField(DexField field) {
assert checkIfObsolete();
return resolveFieldOn(field.holder, field);
}
/**
* Implements resolution of a field descriptor against a type.
* <p>
* See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2">
* Section 5.4.3.2 of the JVM Spec</a>.
*/
public DexEncodedField resolveFieldOn(DexType type, DexField desc) {
assert checkIfObsolete();
DexClass holder = definitionFor(type);
if (holder == null) {
return null;
}
// Step 1: Class declares the field.
DexEncodedField result = holder.lookupField(desc);
if (result != null) {
return result;
}
// Step 2: Apply recursively to direct superinterfaces. First match succeeds.
for (DexType iface : holder.interfaces.values) {
result = resolveFieldOn(iface, desc);
if (result != null) {
return result;
}
}
// Step 3: Apply recursively to superclass.
if (holder.superType != null) {
result = resolveFieldOn(holder.superType, desc);
if (result != null) {
return result;
}
}
return null;
}
/**
* Implements the dispatch logic for a static invoke operation.
* <p>
* The only requirement is that the method is indeed static.
*/
public DexEncodedMethod dispatchStaticInvoke(ResolutionResult resolvedMethod) {
assert checkIfObsolete();
DexEncodedMethod target = resolvedMethod.getSingleTarget();
if (target != null && target.accessFlags.isStatic()) {
return target;
}
return null;
}
/**
* Implements the dispatch logic for the direct parts of a invokespecial instruction.
* <p>
* The only requirement is that the method is not static.
*/
public DexEncodedMethod dispatchDirectInvoke(ResolutionResult resolvedMethod) {
assert checkIfObsolete();
DexEncodedMethod target = resolvedMethod.getSingleTarget();
if (target != null && !target.accessFlags.isStatic()) {
return target;
}
return null;
}
public boolean hasSubtyping() {
assert checkIfObsolete();
return false;
}
public AppInfoWithSubtyping withSubtyping() {
assert checkIfObsolete();
return null;
}
public boolean hasLiveness() {
assert checkIfObsolete();
return false;
}
public AppInfoWithLiveness withLiveness() {
assert checkIfObsolete();
return null;
}
public boolean isInMainDexList(DexType type) {
assert checkIfObsolete();
return app.mainDexList.contains(type);
}
private static class MaximallySpecificMethodsBuilder {
// The set of actual maximally specific methods.
// This set is linked map so that in the case where a number of methods remain a deterministic
// choice can be made. The map is from definition classes to their maximally specific method, or
// in the case that a type has a candidate which is shadowed by a subinterface, the map will
// map the class to a null entry, thus any addition to the map must check for key containment
// prior to writing.
LinkedHashMap<DexClass, DexEncodedMethod> maximallySpecificMethods = new LinkedHashMap<>();
void addCandidate(DexClass holder, DexEncodedMethod method, AppInfo appInfo) {
// If this candidate is already a candidate or it is shadowed, then no need to continue.
if (maximallySpecificMethods.containsKey(holder)) {
return;
}
maximallySpecificMethods.put(holder, method);
// Prune exiting candidates and prohibit future candidates in the super hierarchy.
assert holder.isInterface();
assert holder.superType == appInfo.dexItemFactory.objectType;
for (DexType iface : holder.interfaces.values) {
markShadowed(iface, appInfo);
}
}
private void markShadowed(DexType type, AppInfo appInfo) {
if (type == null) {
return;
}
DexClass clazz = appInfo.definitionFor(type);
if (clazz == null) {
return;
}
assert clazz.isInterface();
assert clazz.superType == appInfo.dexItemFactory.objectType;
// A null entry signifies that the candidate is shadowed blocking future candidates.
// If the candidate is already shadowed at this type there is no need to shadow further up.
if (maximallySpecificMethods.containsKey(clazz)
&& maximallySpecificMethods.get(clazz) == null) {
return;
}
maximallySpecificMethods.put(clazz, null);
for (DexType iface : clazz.interfaces.values) {
markShadowed(iface, appInfo);
}
}
ResolutionResult resolve() {
if (maximallySpecificMethods.isEmpty()) {
return NoSuchMethodResult.INSTANCE;
}
// Fast path in the common case of a single method.
if (false && maximallySpecificMethods.size() == 1) {
return new SingleResolutionResult(maximallySpecificMethods.values().iterator().next());
}
DexEncodedMethod firstMaximallySpecificMethod = null;
List<DexEncodedMethod> nonAbstractMethods = new ArrayList<>(maximallySpecificMethods.size());
for (DexEncodedMethod method : maximallySpecificMethods.values()) {
if (method == null) {
// Ignore shadowed candidates.
continue;
}
if (firstMaximallySpecificMethod == null) {
firstMaximallySpecificMethod = method;
}
if (method.isNonAbstractVirtualMethod()) {
nonAbstractMethods.add(method);
}
}
// If there are no non-abstract methods, then any candidate will suffice as a target.
// For deterministic resolution, we return the first mapped method (of the linked map).
if (nonAbstractMethods.isEmpty()) {
return new SingleResolutionResult(firstMaximallySpecificMethod);
}
// If there is exactly one non-abstract method (a default method) it is the resolution target.
if (nonAbstractMethods.size() == 1) {
return new SingleResolutionResult(nonAbstractMethods.get(0));
}
// TODO(b/144085169): In the case of multiple non-abstract methods resolution should fail.
return new MultiResolutionResult(ImmutableList.copyOf(nonAbstractMethods));
}
}
}