blob: 2f6939e07739d1ae43a7c79dafd6a50b8635fc00 [file] [log] [blame]
// Copyright (c) 2022, the R8 project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
package com.android.tools.r8.graph;
import com.android.tools.r8.graph.MethodResolutionResult.ArrayCloneMethodResult;
import com.android.tools.r8.graph.MethodResolutionResult.ClassNotFoundResult;
import com.android.tools.r8.graph.MethodResolutionResult.IllegalAccessOrNoSuchMethodResult;
import com.android.tools.r8.graph.MethodResolutionResult.IncompatibleClassResult;
import com.android.tools.r8.graph.MethodResolutionResult.NoSuchMethodResult;
import com.android.tools.r8.graph.MethodResolutionResult.SingleResolutionResult;
import com.android.tools.r8.ir.desugar.LambdaDescriptor;
import com.android.tools.r8.utils.ListUtils;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map.Entry;
import java.util.function.Function;
/**
* Implements resolution of a method descriptor against a type.
*
* <p>See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.3 of the JVM Spec</a>.
*/
public class MethodResolution {
private final Function<DexType, DexClass> definitionFor;
private final DexItemFactory factory;
public MethodResolution(Function<DexType, DexClass> definitionFor, DexItemFactory factory) {
this.definitionFor = definitionFor;
this.factory = factory;
}
private DexClass definitionFor(DexType type) {
return definitionFor.apply(type);
}
/**
* This method will query the definition of the holder to decide on which resolution to use. If
* the holder is an interface, it delegates to {@link #resolveMethodOnInterface(DexClass,
* DexProto, DexString)}, otherwise {@link #resolveMethodOnClass(DexClass, DexProto, DexString)}
* is used.
*
* <p>This is to overcome the shortcoming of the DEX file format that does not allow to encode the
* kind of a method reference.
*/
public MethodResolutionResult unsafeResolveMethodDueToDexFormat(DexMethod method) {
DexType holder = method.holder;
if (holder.isArrayType()) {
return resolveMethodOnArray(holder, method.getProto(), method.getName());
}
DexClass definition = definitionFor(holder);
if (definition == null) {
return ClassNotFoundResult.INSTANCE;
} else if (definition.isInterface()) {
return resolveMethodOnInterface(definition, method.getProto(), method.getName());
} else {
return resolveMethodOnClass(definition, method.getProto(), method.getName());
}
}
/**
* Implements resolution of a method descriptor against an array type.
*
* <p>See <a href="https://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.7">Section
* 10.7 of the Java Language Specification</a>. All invokations will have target java.lang.Object
* except clone which has no target.
*/
private MethodResolutionResult resolveMethodOnArray(
DexType holder, DexProto methodProto, DexString methodName) {
assert holder.isArrayType();
if (methodName == factory.cloneMethodName) {
return ArrayCloneMethodResult.INSTANCE;
} else {
return resolveMethodOnClass(factory.objectType, methodProto, methodName);
}
}
/**
* Implements resolution of a method descriptor against a class type.
*
* <p>See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.3 of the JVM Spec</a>.
*
* <p>The resolved method is not the method that will actually be invoked. Which methods gets
* invoked depends on the invoke instruction used. However, it is always safe to rewrite any
* invoke on the given descriptor to a corresponding invoke on the resolved descriptor, as the
* resolved method is used as basis for dispatch.
*/
public MethodResolutionResult resolveMethodOnClass(
DexType holder, DexProto methodProto, DexString methodName) {
if (holder.isArrayType()) {
return resolveMethodOnArray(holder, methodProto, methodName);
}
DexClass clazz = definitionFor(holder);
if (clazz == null) {
return ClassNotFoundResult.INSTANCE;
}
// Step 1: If holder is an interface, resolution fails with an ICCE. We return null.
if (clazz.isInterface()) {
return IncompatibleClassResult.INSTANCE;
}
return resolveMethodOnClass(clazz, methodProto, methodName);
}
public MethodResolutionResult resolveMethodOnClass(
DexClass clazz, DexProto methodProto, DexString methodName) {
assert !clazz.isInterface();
// Step 2:
MethodResolutionResult result =
resolveMethodOnClassStep2(clazz, methodProto, methodName, clazz);
if (result != null) {
return result;
}
// Finally Step 3:
return resolveMethodStep3(clazz, methodProto, methodName);
}
/**
* Implements step 2 of method resolution on classes as per <a
* href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">Section
* 5.4.3.3 of the JVM Spec</a>.
*/
private MethodResolutionResult resolveMethodOnClassStep2(
DexClass clazz,
DexProto methodProto,
DexString methodName,
DexClass initialResolutionHolder) {
// Pt. 1: Signature polymorphic method check.
// See also <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9">
// Section 2.9 of the JVM Spec</a>.
DexEncodedMethod result = clazz.lookupSignaturePolymorphicMethod(methodName, factory);
if (result != null) {
return new SingleResolutionResult(initialResolutionHolder, clazz, result);
}
// Pt 2: Find a method that matches the descriptor.
result = clazz.lookupMethod(methodProto, methodName);
if (result != null) {
// If the resolved method is private, then it can only be accessed if the symbolic reference
// that initiated the resolution was the type at which the method resolved on. If that is not
// the case, then the error is either an IllegalAccessError, or in the case where access is
// allowed because of nests, a NoSuchMethodError. Which error cannot be determined without
// knowing the calling context.
if (result.isPrivateMethod() && clazz != initialResolutionHolder) {
return new IllegalAccessOrNoSuchMethodResult(initialResolutionHolder, result);
}
return new SingleResolutionResult(initialResolutionHolder, clazz, result);
}
// Pt 3: Apply step two to direct superclass of holder.
if (clazz.superType != null) {
DexClass superClass = definitionFor(clazz.superType);
if (superClass != null) {
return resolveMethodOnClassStep2(
superClass, methodProto, methodName, initialResolutionHolder);
}
}
return null;
}
/**
* Implements step 3 of <a
* href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">Section
* 5.4.3.3 of the JVM Spec</a>. As this is the same for interfaces and classes, we share one
* implementation.
*/
private MethodResolutionResult resolveMethodStep3(
DexClass clazz, DexProto methodProto, DexString methodName) {
MaximallySpecificMethodsBuilder builder =
new MaximallySpecificMethodsBuilder(definitionFor, factory);
resolveMethodStep3Helper(methodProto, methodName, clazz, builder);
return builder.resolve(clazz);
}
MethodResolutionResult resolveMaximallySpecificTarget(DexClass clazz, DexMethod method) {
return resolveMaximallySpecificTargetHelper(clazz, method).resolve(clazz);
}
MethodResolutionResult resolveMaximallySpecificTarget(LambdaDescriptor lambda, DexMethod method) {
return resolveMaximallySpecificTargetHelper(lambda, method).internalResolve(null);
}
// Non-private lookup (ie, not resolution) to find interface targets.
DexClassAndMethod lookupMaximallySpecificTarget(DexClass clazz, DexMethod method) {
return resolveMaximallySpecificTargetHelper(clazz, method).lookup();
}
private MaximallySpecificMethodsBuilder resolveMaximallySpecificTargetHelper(
DexClass clazz, DexMethod method) {
MaximallySpecificMethodsBuilder builder =
new MaximallySpecificMethodsBuilder(definitionFor, factory);
resolveMethodStep3Helper(method.getProto(), method.getName(), clazz, builder);
return builder;
}
private MaximallySpecificMethodsBuilder resolveMaximallySpecificTargetHelper(
LambdaDescriptor lambda, DexMethod method) {
MaximallySpecificMethodsBuilder builder =
new MaximallySpecificMethodsBuilder(definitionFor, factory);
resolveMethodStep3Helper(
method.getProto(), method.getName(), factory.objectType, lambda.interfaces, builder);
return builder;
}
/** Helper method that builds the set of maximally specific methods. */
private void resolveMethodStep3Helper(
DexProto methodProto,
DexString methodName,
DexClass clazz,
MaximallySpecificMethodsBuilder builder) {
resolveMethodStep3Helper(
methodProto, methodName, clazz.superType, Arrays.asList(clazz.interfaces.values), builder);
}
private void resolveMethodStep3Helper(
DexProto methodProto,
DexString methodName,
DexType superType,
List<DexType> interfaces,
MaximallySpecificMethodsBuilder builder) {
for (DexType iface : interfaces) {
DexClass definition = definitionFor(iface);
if (definition == null) {
// Ignore missing interface definitions.
continue;
}
assert definition.isInterface();
DexEncodedMethod result = definition.lookupMethod(methodProto, methodName);
if (isMaximallySpecificCandidate(result)) {
// The candidate is added and doing so will prohibit shadowed methods from being in the set.
builder.addCandidate(definition, result);
} else {
// Look at the super-interfaces of this class and keep searching.
resolveMethodStep3Helper(methodProto, methodName, definition, builder);
}
}
// Now look at indirect super interfaces.
if (superType != null) {
DexClass superClass = definitionFor(superType);
if (superClass != null) {
resolveMethodStep3Helper(methodProto, methodName, superClass, builder);
}
}
}
/**
* A candidate for being a maximally specific method must have neither its private, nor its static
* flag set. A candidate may still not be maximally specific, which entails that no subinterfaces
* from also contribute with a candidate to the type. That is not determined by this method.
*/
private boolean isMaximallySpecificCandidate(DexEncodedMethod method) {
return method != null && !method.accessFlags.isPrivate() && !method.accessFlags.isStatic();
}
/**
* Implements resolution of a method descriptor against an interface type.
*
* <p>See <a href="https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.3">
* Section 5.4.3.4 of the JVM Spec</a>.
*
* <p>The resolved method is not the method that will actually be invoked. Which methods gets
* invoked depends on the invoke instruction used. However, it is always save to rewrite any
* invoke on the given descriptor to a corresponding invoke on the resolved descriptor, as the
* resolved method is used as basis for dispatch.
*/
public MethodResolutionResult resolveMethodOnInterface(
DexType holder, DexProto proto, DexString methodName) {
if (holder.isArrayType()) {
return IncompatibleClassResult.INSTANCE;
}
// Step 1: Lookup interface.
DexClass definition = definitionFor(holder);
// If the definition is not an interface, resolution fails with an ICCE. We just return the
// empty result here.
if (definition == null) {
return ClassNotFoundResult.INSTANCE;
}
if (!definition.isInterface()) {
return IncompatibleClassResult.INSTANCE;
}
return resolveMethodOnInterface(definition, proto, methodName);
}
public MethodResolutionResult resolveMethodOnInterface(
DexClass definition, DexProto methodProto, DexString methodName) {
assert definition.isInterface();
// Step 2: Look for exact method on interface.
DexEncodedMethod result = definition.lookupMethod(methodProto, methodName);
if (result != null) {
return new SingleResolutionResult(definition, definition, result);
}
// Step 3: Look for matching method on object class.
DexClass objectClass = definitionFor(factory.objectType);
if (objectClass == null) {
return ClassNotFoundResult.INSTANCE;
}
result = objectClass.lookupMethod(methodProto, methodName);
if (result != null && result.accessFlags.isPublic() && !result.accessFlags.isAbstract()) {
return new SingleResolutionResult(definition, objectClass, result);
}
// Step 3: Look for maximally-specific superinterface methods or any interface definition.
// This is the same for classes and interfaces.
return resolveMethodStep3(definition, methodProto, methodName);
}
static class MaximallySpecificMethodsBuilder {
// The set of actual maximally specific methods.
// This set is linked map so that in the case where a number of methods remain a deterministic
// choice can be made. The map is from definition classes to their maximally specific method, or
// in the case that a type has a candidate which is shadowed by a subinterface, the map will
// map the class to a null entry, thus any addition to the map must check for key containment
// prior to writing.
private final LinkedHashMap<DexClass, DexEncodedMethod> maximallySpecificMethods =
new LinkedHashMap<>();
private final Function<DexType, DexClass> definitionFor;
private final DexItemFactory factory;
private MaximallySpecificMethodsBuilder(
Function<DexType, DexClass> definitionFor, DexItemFactory factory) {
this.definitionFor = definitionFor;
this.factory = factory;
}
void addCandidate(DexClass holder, DexEncodedMethod method) {
// If this candidate is already a candidate or it is shadowed, then no need to continue.
if (maximallySpecificMethods.containsKey(holder)) {
return;
}
maximallySpecificMethods.put(holder, method);
// Prune exiting candidates and prohibit future candidates in the super hierarchy.
assert holder.isInterface();
assert holder.superType == factory.objectType;
for (DexType iface : holder.interfaces.values) {
markShadowed(iface);
}
}
private void markShadowed(DexType type) {
if (type == null) {
return;
}
DexClass clazz = definitionFor.apply(type);
if (clazz == null) {
return;
}
assert clazz.isInterface();
assert clazz.superType == factory.objectType;
// A null entry signifies that the candidate is shadowed blocking future candidates.
// If the candidate is already shadowed at this type there is no need to shadow further up.
if (maximallySpecificMethods.containsKey(clazz)
&& maximallySpecificMethods.get(clazz) == null) {
return;
}
maximallySpecificMethods.put(clazz, null);
for (DexType iface : clazz.interfaces.values) {
markShadowed(iface);
}
}
DexClassAndMethod lookup() {
return internalResolve(null).getResolutionPair();
}
MethodResolutionResult resolve(DexClass initialResolutionHolder) {
assert initialResolutionHolder != null;
return internalResolve(initialResolutionHolder);
}
private MethodResolutionResult internalResolve(DexClass initialResolutionHolder) {
if (maximallySpecificMethods.isEmpty()) {
return NoSuchMethodResult.INSTANCE;
}
// Fast path in the common case of a single method.
if (maximallySpecificMethods.size() == 1) {
return singleResultHelper(
initialResolutionHolder, maximallySpecificMethods.entrySet().iterator().next());
}
Entry<DexClass, DexEncodedMethod> firstMaximallySpecificMethod = null;
List<Entry<DexClass, DexEncodedMethod>> nonAbstractMethods =
new ArrayList<>(maximallySpecificMethods.size());
for (Entry<DexClass, DexEncodedMethod> entry : maximallySpecificMethods.entrySet()) {
DexEncodedMethod method = entry.getValue();
if (method == null) {
// Ignore shadowed candidates.
continue;
}
if (firstMaximallySpecificMethod == null) {
firstMaximallySpecificMethod = entry;
}
if (method.isNonAbstractVirtualMethod()) {
nonAbstractMethods.add(entry);
}
}
// If there are no non-abstract methods, then any candidate will suffice as a target.
// For deterministic resolution, we return the first mapped method (of the linked map).
if (nonAbstractMethods.isEmpty()) {
return singleResultHelper(initialResolutionHolder, firstMaximallySpecificMethod);
}
// If there is exactly one non-abstract method (a default method) it is the resolution target.
if (nonAbstractMethods.size() == 1) {
return singleResultHelper(initialResolutionHolder, nonAbstractMethods.get(0));
}
return IncompatibleClassResult.create(ListUtils.map(nonAbstractMethods, Entry::getValue));
}
private static SingleResolutionResult singleResultHelper(
DexClass initialResolutionResult, Entry<DexClass, DexEncodedMethod> entry) {
return new SingleResolutionResult(
initialResolutionResult != null ? initialResolutionResult : entry.getKey(),
entry.getKey(),
entry.getValue());
}
}
}